دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
دسته بندی: الگوریتم ها و ساختارهای داده ویرایش: نویسندگان: Anubhab Baksi سری: Computer Architecture and Design Methodologies ISBN (شابک) : 9811665214, 9789811665219 ناشر: Springer سال نشر: 2021 تعداد صفحات: 295 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 14 مگابایت
در صورت تبدیل فایل کتاب Classical and Physical Security of Symmetric Key Cryptographic Algorithms به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب امنیت کلاسیک و فیزیکی الگوریتمهای رمزنگاری کلید متقارن نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این کتاب چندین جنبه کلیدی را از تحقیقات پیشرفته در
رمزنگاری کلید متقارن، که یکی از سنگ بنای امنیت دیجیتال است،
ادغام می کند. این محتوا را به صورت آموزنده و در عین حال مبتدی
پسند، همراه با نمونه های اسباب بازی و گرافیک قابل فهم ارائه می
دهد. به طور خاص، تحولات اخیر در تجزیه و تحلیل رمزها به کمک
ابزار را برجسته می کند. علاوه بر این، حملات وابسته به دستگاه
امیدوارکننده، مانند حمله خطا و حملات کانال جانبی در رمزهای
متقارن کلید، به تفصیل مورد بحث قرار میگیرند. یکی از ویژگی های
بارز این کتاب ارائه تجزیه و تحلیل دقیق از اقدامات متقابل خطای
مختلف است. پوشش کتاب ما کاملاً متنوع است - از اطلاعات پیش نیاز،
آخرین مشارکت تحقیقاتی و همچنین جهتهای تحقیقاتی آینده متغیر
است. این به دانشجویان و محققانی که در زمینه رمزنگاری کار می
کنند پاسخ می دهد.
This book consolidates several key aspects from the
state-of-the-art research in symmetric key cryptography, which
is among the cornerstones of digital security. It presents the
content in an informative yet beginner-friendly, accompanied
with toy examples and comprehensible graphics. In particular,
it highlights the recent developments in tool-assisted analysis
of ciphers. Furthermore, promising device-dependent attacks,
such as fault attack and side channel attacks on symmetric key
ciphers, are discussed in detail. One salient feature of this
book is to present a detailed analysis of various fault
countermeasures. The coverage of our book is quite diverse―it
ranges from prerequisite information, latest research
contribution as well as future research directions. It caters
to students and researchers working in the field of
cryptography.
About This Book Contents 1 Introduction 1.1 Context and Motivation 1.2 Research Directions 1.2.1 Cipher Design and Classical Cryptanalysis 1.2.2 Realization/Mapping 1.2.3 Physical Attack and Countermeasure 1.3 Standardization of Ciphers 1.4 Organization References 2 Fundamentals of Symmetric Key Cryptography 2.1 Building Blocks 2.1.1 Boolean Function 2.1.2 Substitution Box (SBox) 2.1.3 Linear Layer 2.2 Primitives 2.2.1 (Un-keyed) Permutation 2.2.2 Block Cipher 2.2.3 Stream Cipher 2.2.4 Hash Function 2.2.5 Message Authentication Code (MAC) 2.2.6 Authenticated Encryption with Associated Data (AEAD) 2.3 Cipher Families 2.3.1 Substitution Permutation Network (SPN) 2.3.2 Feistel Network 2.3.3 Add–Rotation–XOR (ARX) Construction 2.4 Description of Exemplary Ciphers 2.4.1 ADVANCED ENCRYPTION STANDARD (AES) 2.4.2 PRESENT-80 2.4.3 GIFT-128 2.4.4 CHASKEY 2.5 Formidability of the Attacker 2.5.1 Conventional Notions of Security 2.5.2 Power of the Attacker 2.5.3 Objective of the Attacker 2.6 Major Classical Attacks 2.6.1 Differential Attack 2.6.2 Linear Attack 2.6.3 Algebraic Attack 2.6.4 Integral/Cube Attack 2.6.5 Impossible Differential Attack 2.7 Device Implementation 2.8 Additional Topics 2.8.1 Black Box–Grey Box–White Box Models 2.8.2 Mixed Integer Linear Programming (MILP) 2.8.3 Machine Learning (ML) 2.8.4 Competitions References 3 Fault Attack 3.1 Introduction 3.2 Fault Models 3.2.1 Precise Bit Flip 3.2.2 Single/Multiple Fault Adversary 3.2.3 Random/Deterministic Fault Model 3.2.4 Information Theoretic View 3.2.5 Other Aspects 3.3 Data Alteration Methods 3.3.1 Volatility 3.3.2 Modification of Operation 3.3.3 Modification of Operand 3.4 Sources of Fault Injection 3.5 Analysis Methods 3.5.1 Difference-Based Fault Analysis 3.5.2 Collision-Based Fault Analysis 3.5.3 Statistics-Based Fault Analysis 3.5.4 Others 3.6 Generalized Fault Attack Automation Frameworks 3.6.1 Cipher Level Approaches 3.6.2 Implementation Level Approaches 3.7 Countermeasures 3.7.1 Detection 3.7.2 Infection 3.7.3 Prevention 3.7.4 Re-keying, Tweak and Tweak-in-Plaintext, Masking Plaintext 3.7.5 Attacks on Countermeasures 3.7.6 Specialized Countermeasures Against Statistical Ineffective Fault Attack References 4 Side Channel Attack 4.1 Introduction and Background 4.2 Power Analysis 4.2.1 Simple Power Analysis 4.2.2 Differential Power Analysis (DPA) 4.2.3 Template Attack 4.2.4 Correlation Power Analysis (CPA) 4.2.5 Countermeasures 4.3 Case Study: Side Channel Analysis of CHASKEY 4.3.1 Practical Attack Setups 4.3.2 Experimental Results References 5 New Insights on Differential and Linear Bounds Using Mixed Integer Linear Programming 5.1 Introduction 5.2 Background 5.2.1 Branch Number to Model SBox (Inscrypt'11) 5.2.2 Convex Hull to Model SBox—Active SBox Count (Eprint'13) 5.2.3 Convex Hull to Model SBox—Exact Bound (Eprint'14) 5.2.4 Redundant Constraints to Reduce Solution Time (Eprint'19) 5.3 Problem with Convex Hull Modelling 5.4 Automated Bounds with MILP: Our Proposal 5.4.1 Modelling 5.4.2 Optimizations 5.4.3 Results 5.5 Conclusion 5.6 Supplementary Discussion 5.6.1 Detailed Description on MILP Modelling of XOR 5.6.2 Illustration with MILP Model for 1-Round Differential Bound for GIFT-128 5.6.3 Illustration with MILP Model of Previous Constraints for 4-Round Differential Bound for GIFT-128 References 6 Machine Learning-Assisted Differential Distinguishers for Lightweight Ciphers 6.1 Introduction 6.2 Background 6.2.1 Markov Ciphers 6.2.2 Gohr's Work on SPECK (CRYPTO'19) 6.3 Basic Description of the Ciphers 6.3.1 GIMLI 6.3.2 ASCON 6.3.3 KNOT 6.4 Machine Learning-Based Distinguishers 6.4.1 Model 1: Multiple Input Differences 6.4.2 Model 2: One Input Difference 6.4.3 Comparison with Existing Models 6.5 Results on Round-Reduced Ciphers 6.5.1 Gimli (Model 1) 6.5.2 ASCON and KNOT (Model 1) 6.5.3 CHASKEY (Model 2) 6.6 Choice of Machine Learning Model 6.7 Conclusion and Follow-Up Problems References 7 Differential Paradox: How an SBox Plays Against Differential Fault Analysis 7.1 Introduction 7.2 Difference Distribution Table-Related Properties 7.3 Characterizing SBoxes in View of DFA 7.4 Implication of Our Analysis and Future Work References 8 DEFAULT: Cipher-Level Resistance Against Differential Fault Attack 8.1 Introduction 8.2 Background 8.2.1 DFA Models 8.2.2 DFA Protection 8.2.3 Feasibility of Cipher-Level Protection Against Faults 8.2.4 Working Principle for DFA 8.3 Construction of DFA-Resistant Layer/Cipher 8.3.1 Ad hoc DFA Protection to Any Cipher (DeFault-Layer) 8.3.2 Extension to a Full-Fledged Cipher (DeFault) 8.3.3 Construction of DeFault-Layer 8.3.4 Construction of DeFault-Core (and DeFault) 8.4 Design Rationale 8.4.1 Design Philosophy 8.4.2 Structure of the DeFault PermBits 8.4.3 Selection of the DeFault SBoxes 8.4.4 Unbiased Linear Structures 8.5 Security Analysis 8.5.1 Protection Against Differential Fault Attack 8.5.2 Protection Against Classical Cryptanalysis 8.5.3 Protection Against Side Channels Attacks 8.6 Automated Bounds for Differential and Linear Attacks 8.7 Performance 8.7.1 Hardware Benchmark 8.7.2 Software Benchmark 8.8 Conclusion 8.9 Supplementary Discussion References 9 To Infect or Not to Infect: A Critical Analysis of Infective Countermeasures in Fault Attacks 9.1 Introduction 9.2 Background 9.2.1 Context of Differential Fault Analysis 9.2.2 Early Countermeasures: Detection-Based 9.2.3 Evolution of Infective Countermeasures 9.2.4 Notations and Terminologies 9.2.5 Necessity and Sufficiency of Randomness 9.2.6 Scope and Applicability 9.2.7 Connection with Side Channel Countermeasures 9.3 Type I Constructions 9.3.1 Multiplication-Based Constructions 9.3.2 Derivative-Based Constructions 9.3.3 New Type I Schemes 9.3.4 Benchmarking Results for Type I Schemes 9.4 Type II/Cipher-Level Constructions 9.4.1 Critical Look at CHES'14 Countermeasure 9.4.2 Our Patch for LatinCrypt'12 Countermeasure 9.5 Conclusion References 10 A Novel Duplication-Based Countermeasure to Statistical Ineffective Fault Analysis 10.1 Introduction 10.2 Fault Attack Preliminaries 10.2.1 Differential Fault Attack (DFA) 10.2.2 General Countermeasures Against Fault Attacks 10.3 Statistical Ineffective Fault Attack (SIFA) 10.3.1 Duplication-Based Countermeasures and Need for Specialization 10.3.2 Existing SIFA Countermeasures 10.4 Our Proposed Solution 10.4.1 Adopting Inverted Logic to Symmetric Key Ciphers 10.4.2 Benchmarks 10.4.3 Evaluation 10.4.4 Comparison with Existing Countermeasures 10.4.5 Connection with Side Channel Countermeasures 10.5 Conclusion References 11 Concluding Remarks 11.1 Synopsis 11.2 Interesting Problems for Future Research References Index