دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: [1 ed.] نویسندگان: Qiang Yuan, Zanqun Liu, Keren Zheng, Cong Ma سری: ISBN (شابک) : 0128228652, 9780128228654 ناشر: Elsevier سال نشر: 2021 تعداد صفحات: 398 [400] زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 6 Mb
در صورت تبدیل فایل کتاب Civil Engineering Materials: From Theory to Practice به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب مواد مهندسی عمران: از تئوری تا عمل نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
مواد مهندسی عمران: از تئوری تا عمل جدیدترین فناوریها را در مواد مهندسی عمران ارائه میکند، از جمله نظریه اساسی مواد مورد نیاز برای پروژههای مهندسی عمران و بینشهای منحصربهفرد از دههها پروژه بزرگ. ساخت و ساز مقیاس در چین. این عنوان شامل آخرین پیشرفتها در مواد و تکنیکهای جدید برای مهندسی عمران است که نشاندهنده رابطه بین ترکیب، ساختار و خواص، و پوشش بتن با عملکرد فوقالعاده و بتن خود تراکم توسعهیافته در چین است. این کتاب پوشش جامعی از متداولترین و پیشرفتهترین مواد برای استفاده در مهندسی عمران را ارائه میکند.
این جلد شامل هشت فصل است که اصول مصالح، مواد سیمانی غیرآلی، بتن سیمان پرتلند، آجر، بلوک را پوشش میدهد. و ملات ساختمانی، فلز، چوب، آسفالت و پلیمرها.
Civil Engineering Materials: From Theory to Practice presents the state-of-the-art in civil engineering materials, including the fundamental theory of materials needed for civil engineering projects and unique insights from decades of large-scale construction in China. The title includes the latest advances in new materials and techniques for civil engineering, showing the relationship between composition, structure and properties, and covering ultra-high-performance concrete and self-compacting concrete developed in China. This book provides comprehensive coverage of the most commonly used, most advanced materials for use in civil engineering.
This volume consists of eight chapters covering the fundamentals of materials, inorganic cementing materials, Portland cement concrete, bricks, blocks and building mortar, metal, wood, asphalt and polymers.
Front Cover CIVIL ENGINEERING MATERIALS CIVIL ENGINEERING MATERIALS: From Theory to Practice Copyright Contents Preface 1 - Fundamentals of materials 1.1 Composition and structure 1.1.1 Composition 1.1.1.1 Chemical composition 1.1.1.2 Phase composition 1.1.2 Structure 1.1.2.1 Atomic structure 1.1.2.2 Microstructure 1.1.2.3 Macrostructure 1.2 Physical properties 1.2.1 Density and specific gravity 1.2.2 Fineness 1.2.3 Thermal conductivity and heat capacity 1.2.4 Linear coefficient of thermal expansion 1.2.5 Wetting and capillarity 1.3 Mechanical properties 1.3.1 Loading and strength 1.3.2 Elasticity and plasticity 1.3.3 Brittleness and toughness 1.3.4 Hardness 1.3.5 Dynamic mechanical properties 1.4 Durability Exercises 2 - Inorganic cementing materials 2.1 Portland cement 2.1.1 Manufacture 2.1.2 Composition 2.1.3 Hydration 2.1.3.1 The hydration process: reaction 2.1.3.2 Hydration products 2.1.3.2.1 Calcium silicate hydrate 2.1.3.2.2 Calcium hydroxide or portlandite 2.1.3.2.3 AFm and AFt phases 2.1.3.2.4 Ettringite 2.1.3.3 Setting and hardening 2.1.3.3.1 The hydration leads to setting and hardening 2.1.3.3.2 Interlayer space in C-S-H 2.1.3.3.3 Capillary voids 2.1.4 Properties 2.1.4.1 Physical properties 2.1.4.1.1 Fineness 2.1.4.1.2 Soundness 2.1.4.1.3 Consistency 2.1.4.1.4 Setting time 2.1.4.1.5 Strength 2.1.4.1.6 Heat of hydration 2.1.4.1.7 Bulk density 2.1.4.1.8 Specific gravity (relative density) 2.1.4.2 Chemical properties 2.1.4.2.1 Loss of ignition 2.1.4.2.2 Insoluble residue 2.1.4.2.3 Total chloride content 2.1.4.2.4 Alkali 2.1.5 Corrosion and prevention of hardened cement 2.1.5.1 Corrosion of hardened cement 2.1.5.1.1 Soft water corrosion (dissolving corrosion) 2.1.5.1.2 Acid corrosion 2.1.5.1.3 Strong alkali corrosion 2.1.5.1.4 Sulfate attack caused corrosion 2.1.5.2 Prevention of the corrosion of hardened cement 2.1.5.2.1 Using appropriate cement 2.1.5.2.2 Increase the impermeability 2.1.5.2.3 Surface protective covering 2.1.6 Application 2.1.7 Special Portland-based cements 2.1.7.1 White Portland cement 2.1.7.2 Sulfate resistance cement 2.1.7.3 Expansive cement 2.1.8 Blended cement 2.1.8.1 Portland-slag cement 2.1.8.2 Portland-pozzolan cement 2.1.8.3 Portland-limestone cement 2.1.8.4 Ternary blended cement 2.1.8.5 Advantages of blended cement 2.2 Calcium sulfoaluminate cement 2.2.1 Manufacture and composition 2.2.2 Hydration 2.2.3 Properties 2.2.3.1 Rapid strength gain 2.2.3.2 Lower carbon 2.2.3.3 Lower alkalinity 2.2.3.4 Lower shrinkage 2.2.3.5 Shorter curing time 2.2.4 Application 2.3 Calcium aluminate cements 2.3.1 Manufacture and composition 2.3.2 Hydration 2.3.2.1 The initial stage 2.3.2.2 The second stage 2.3.2.3 The final stage 2.3.3 Properties 2.3.3.1 Strength 2.3.3.2 Workability and setting time 2.3.3.3 Durability 2.3.3.4 Refractory properties 2.3.4 Application 2.3.4.1 Heat-resistant and refractory concretes 2.3.4.2 Rapid repair and construction 2.3.4.3 Building chemistry products 2.3.4.4 Sewer applications 2.3.4.5 Chemical-resistant concretes 2.4 Alkali-activated cement 2.4.1 Manufacture 2.4.2 Alkali activation process and products 2.4.3 Properties 2.4.4 Application 2.5 Magnesium-based cements 2.5.1 Manufacture and composition 2.5.2 Hydration 2.5.3 Properties 2.5.3.1 Fast setting and rapid strength gain 2.5.3.2 High strength 2.5.3.3 High bonding strength 2.5.3.4 Low electrical and thermal conductivity 2.5.3.5 Flame retardant 2.5.3.6 Good abrasion resistance 2.5.4 Application 2.5.4.1 MOC 2.5.4.2 MOS 2.5.4.3 MPC Exercises 3 - Portland cement concrete 3.1 Introduction 3.1.1 Versatility 3.1.2 Durability 3.1.3 Sustainability 3.1.4 Economy 3.2 Types of concrete 3.2.1 Based on bulk density 3.2.2 Based on application 3.2.3 Based on the construction method 3.3 Raw materials 3.3.1 Mixing water 3.3.2 Cement 3.3.3 Aggregate 3.3.3.1 Significance of aggregate 3.3.3.2 Classification of aggregates 3.3.3.2.1 Based on density 3.3.3.2.2 Based on sizes 3.3.3.2.3 Based on origins 3.3.3.2.4 Based on mother rock 3.3.3.3 Characteristics of aggregate 3.3.3.4 Particle shape and surface texture 3.3.3.5 Gradation and size 3.3.3.6 The maximum size of aggregate 3.3.3.7 Absorption 3.3.3.8 Density 3.3.3.9 Soundness 3.3.3.10 Mechanical properties 3.3.3.11 Deleterious substances 3.3.4 Green aggregate 3.3.5 Supplementary cementing materials 3.3.5.1 Fly ash 3.3.5.1.1 Physical effects 3.3.5.1.2 Chemical effect 3.3.5.1.3 Surface chemistry effect 3.3.5.2 Blast-furnace slag 3.3.5.3 Silica fume 3.3.5.4 Metakaolin 3.3.5.5 Natural pozzolans 3.3.6 Chemical admixtures 3.3.6.1 Superplasticizers 3.3.6.2 Set controlling agents 3.3.6.3 Air-entraining agents 3.3.6.4 Viscosity-modifying agents 3.4 Concrete at fresh state 3.4.1 Batching, mixing, and transporting 3.4.2 Placing, finishing, and curing 3.4.3 Workability 3.4.4 Properties at early age 3.4.4.1 Bleeding and segregation 3.4.4.2 Plastic shrinkage and cracking 3.5 Mechanical properties 3.5.1 Compressive strength 3.5.2 Tensile strength 3.5.3 Elastic modulus 3.5.4 Factors affecting mechanical properties 3.6 Deformation 3.6.1 Drying shrinkage 3.6.1.1 Capillary effect 3.6.1.2 Disjoining pressure 3.6.1.3 Movement of interlayer water 3.6.2 Creep 3.6.2.1 Moisture movement 3.6.2.2 Structural adjustment or microcracking 3.6.2.3 Delayed elastic strain 3.6.3 Chemical shrinkage 3.6.4 Autogenous shrinkage 3.6.5 Thermal expansion 3.7 Durability 3.7.1 Permeability 3.7.2 Sulfate attack 3.7.3 Acid attack 3.7.4 Freezing-thawing cycle 3.7.4.1 Providing extra space for ice expansion using air bubbles 3.7.4.2 Reducing porosity and refining pores using pozzolans and fillers 3.7.4.3 Containing cracks using fibers, tubes, and sheets 3.7.4.4 Reducing water absorption through hydrophobic concrete 3.7.5 Fire resistance 3.7.6 Alkali-aggregate reaction 3.7.7 Corrosion of steel bar 3.8 Mix design 3.9 Self-compacting concrete and its application in high-speed rail 3.9.1 Introduction 3.9.2 The property requirements of SSFSCC 3.9.2.1 Properties in a hardened state 3.9.2.2 Properties in a fresh state 3.9.2.2.1 Filling ability 3.9.2.2.2 Passing ability 3.9.2.2.3 Stability 3.9.3 Mix proportioning of SSFSCC 3.9.3.1 The key parameters of mix proportion 3.9.3.2 The procedures of mix proportioning of SSFSCC 3.9.3.2.1 Typical mix for SSFSCC 3.9.4 Construction technology of SSFSCC 3.10 Steam-cured concrete 3.10.1 Introduction 3.10.2 Raw materials 3.10.3 Curing regime 3.10.4 Mechanical properties 3.10.4.1 Compressive strength 3.10.4.2 Dynamic mechanical properties 3.10.5 Durability Exercises 4 - Metal 4.1 Introduction 4.2 Structural steel 4.2.1 Chemical composition 4.2.1.1 Carbon 4.2.1.2 Manganese 4.2.1.3 Aluminum 4.2.1.4 Silicon 4.2.1.5 Phosphorus and sulfur 4.2.1.6 Chromium, molybdenum, and nickel 4.2.2 Strengthening mechanisms 4.2.2.1 Controlling the grain size 4.2.2.2 Strain hardening (cold working) 4.2.2.3 Heat treatment 4.2.2.3.1 Normalizing 4.2.2.3.2 Annealing 4.2.2.3.3 Quenching 4.2.2.3.4 Tempering 4.2.2.4 Alloying 4.2.3 Mechanical properties 4.2.3.1 Stress-strain behavior: tensile test 4.2.3.2 Elasticity 4.2.3.3 Plasticity 4.2.3.4 Impact toughness 4.2.3.5 Rigidity 4.2.4 Classifications of steel 4.2.4.1 According to composition 4.2.4.2 According to the application 4.2.4.3 According to deoxidation practice 4.2.4.4 According to shape 4.2.4.5 According to press-working modes 4.3 Standards and selection of building steel 4.3.1 The steel used for steel structures 4.3.1.1 Carbon structural steel 4.3.1.1.1 Designation system 4.3.1.1.2 Technical requirements 4.3.1.1.3 Selection of carbon structural steel 4.3.1.2 High strength low alloy structural steels 4.3.2 Steel for the reinforcement of concrete 4.3.2.1 Hot-rolled reinforced bars 4.3.2.2 Cold-rolled ribbed reinforced bars 4.3.3 Prestressed steel wire for concrete or steel strain 4.3.4 Steel for bridge 4.3.4.1 Codes for representing steel types 4.3.4.2 Technical requirements 4.3.4.3 Characteristics and applications 4.3.5 Rail steel 4.3.5.1 Properties 4.3.5.2 Rail grinding 4.4 Corrosion and prevention of steel 4.4.1 Reasons for corrosion of steel 4.4.1.1 Chemical corrosion 4.4.1.2 Electrochemical corrosion 4.4.2 Corrosion prevention of steel 4.4.2.1 Protective film 4.4.2.2 Electrochemical protection 4.4.2.3 Alloying 4.5 Nonferrous metals 4.5.1 Copper 4.5.2 Aluminum 4.5.3 Magnesium Exercises 5 - Wood 5.1 Introduction 5.2 Structure and composition 5.3 Engineering properties 5.3.1 Relative density 5.3.2 Moisture in wood 5.3.3 Dimensional stability 5.3.4 Mechanical properties 5.3.4.1 Elastic properties 5.3.4.2 Compression strength 5.3.4.3 Tension strength 5.3.4.4 Shear strength 5.3.4.5 Bending strength 5.3.5 Factors affecting the wood strength 5.3.5.1 Moisture content 5.3.5.2 Environment temperature 5.3.5.3 Time under load 5.3.5.4 Defects 5.4 Wood-based composites 5.4.1 Composition and manufacture 5.4.1.1 Elements 5.4.1.2 Adhesives 5.4.1.3 Additives 5.4.1.4 Manufacturer 5.4.2 Plywood 5.4.3 Oriented strand board 5.4.4 Particleboard 5.4.5 Fiberboard 5.4.6 Specialty composite materials 5.4.6.1 Water-repellant composites 5.4.6.2 Flame-retardant composites 5.4.6.3 Preservative-treated composites 5.5 Durability 5.5.1 Moisture 5.5.2 Decay 5.5.3 Termites 5.5.4 Preservative treatments Exercises 6 - Polymers 6.1 Engineering plastics 6.1.1 Introduction 6.1.2 The polymeric molecule 6.1.3 Thermoplastic polymers 6.1.4 Thermosetting polymers 6.2 Sealants 6.3 Adhesive 6.3.1 Composition and type of adhesive 6.3.1.1 Composition and function of adhesive 6.3.1.2 Type of adhesive 6.3.2 Adhesion of adhesive 6.3.2.1 Bond force 6.3.2.2 The main factors affecting the bonding strength 6.3.2.3 Basic requirements for adhesives 6.3.3 Types and properties of common adhesives 6.3.3.1 Synthetic resin adhesives 6.3.3.1.1 Polyvinyl acetate 6.3.3.1.2 Polyvinyl alcohol and polyvinyl acetal adhesives 6.3.3.1.3 Epoxy resin adhesive 6.3.3.1.4 Polyurethane adhesive 6.3.3.2 Rubber adhesives 6.4 Fiber reinforced polymer 6.4.1 Introduction 6.4.2 General properties of FRP materials 6.4.2.1 Constituent materials 6.4.2.1.1 Fibers 6.4.2.1.2 Polymeric matrices 6.4.2.1.3 Resins 6.4.2.1.4 Polymerization agents 6.4.2.1.5 Fillers 6.4.2.1.6 Additives 6.4.2.2 Philosophy in the development of FRP composites Exercises 7 - Asphalt 7.1 Asphalt cement 7.1.1 Introduction 7.1.2 Composition and structure 7.1.2.1 Chemical composition 7.1.2.2 Physical structure 7.1.3 Properties 7.1.3.1 Aging 7.1.3.2 Viscosity and consistency 7.1.3.2.1 Rheological behavior 7.1.3.3 Rheological TESTS 7.1.3.4 Stiffness 7.1.3.5 Temperature susceptibility 7.1.3.6 Tensile properties 7.1.4 Characterization of asphalt cement 7.1.4.1 Performance Grade characterization approach 7.1.4.2 Performance Grade binder characterization 7.1.4.3 Rolling thin-film oven 7.1.4.4 Pressure-aging vessel 7.1.4.5 Flash point 7.1.4.6 Rotational viscometer test 7.1.4.7 Dynamic shear rheometer test 7.2 Liquid asphalts 7.3 Asphalt concrete 7.3.1 Introduction 7.3.2 Composition and structure 7.3.3 Response to applied loads 7.3.3.1 Stiffness 7.3.3.2 Stability 7.3.3.3 Flexibility 7.3.3.4 Fatigue resistance 7.3.3.5 Tensile (fracture) strength 7.3.3.6 Permanent deformation 7.3.4 Response to moisture 7.3.4.1 Permeability 7.3.4.2 Durability 7.3.4.3 Stripping (moisture-induced damage) 7.3.5 Response to temperature 7.3.6 Response to chemicals 7.3.7 Additives and fillers 7.3.7.1 Antistripping agents 7.3.7.2 Asphalt cement modifiers 7.3.7.3 Recycling agents 7.3.7.4 Extenders 7.3.7.5 Fillers 7.3.8 Superpave mix design 7.3.8.1 Binder selection 7.3.8.2 Design aggregate structure Exercises 8 - Cement-based composites 8.1 Cement asphalt composite 8.1.1 Introduction 8.1.2 Raw materials 8.1.2.1 Asphalt emulsion 8.1.2.2 Cement 8.1.2.3 Sand 8.1.2.4 Aluminum powder and expansive agent 8.1.2.5 Other materials 8.1.3 Mix proportion and mixing 8.1.3.1 CRTS I CA 8.1.3.2 CRTS Ⅱ CA 8.1.4 Hardening and structure 8.1.5 Properties 8.1.5.1 Density and air content 8.1.5.2 The properties of the fresh CA mortar 8.1.5.2.1 Flow times 8.1.5.2.2 Working time 8.1.5.2.3 Separation rate and bleeding ratio 8.1.5.3 The factors influencing the properties of fresh CA mortar 8.1.5.3.1 Working time 8.1.5.3.2 Flowability and uniformity 8.1.5.4 Early-age deformation of CA mortar 8.1.5.5 The mechanical properties of the hardened CA mortar 8.1.5.5.1 Compressive strength and flexural strength 8.1.5.5.2 Elastic modulus 8.1.5.5.3 Freezing and thawing resistance and low-temperature properties at -40°C 8.1.5.5.4 Antifatigue performance 8.1.6 Construction technology 8.1.6.1 Construction steps 8.1.6.2 Technological test 8.2 Ultrahigh-performance concrete 8.2.1 Introduction to UHPC 8.2.2 Raw materials 8.2.2.1 Cementitious components 8.2.2.2 Aggregates 8.2.2.3 Superplasticizers 8.2.2.4 Fibers 8.2.3 Mix design 8.2.3.1 Some theoretical principles 8.2.3.1.1 Optimize pore structure 8.2.3.1.2 Improvement in microstructure 8.2.3.1.3 Increase in toughness 8.2.3.2 Mix design 8.2.4 Preparation and curing 8.2.5 Properties 8.2.5.1 Workability/rheology 8.2.5.2 Mechanical properties 8.2.5.3 Dimensional stability 8.2.6 Durability Exercises Index A B C D E F G H I K L M N O P Q R S T U V W Y Back Cover