ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Civil Engineering for Disaster Risk Reduction

دانلود کتاب مهندسی عمران برای کاهش خطر بلایا

Civil Engineering for Disaster Risk Reduction

مشخصات کتاب

Civil Engineering for Disaster Risk Reduction

دسته بندی: فن آوری
ویرایش:  
نویسندگان: , , ,   
سری: Springer Tracts in Civil Engineering 
ISBN (شابک) : 9811653119, 9789811653117 
ناشر: Springer 
سال نشر: 2021 
تعداد صفحات: 481 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 23 مگابایت 

قیمت کتاب (تومان) : 41,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 10


در صورت تبدیل فایل کتاب Civil Engineering for Disaster Risk Reduction به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب مهندسی عمران برای کاهش خطر بلایا نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب مهندسی عمران برای کاهش خطر بلایا

این کتاب یک جلد جامع در مورد چند خطرات و مدیریت آنها برای یک محیط ساخته شده پایدار است. این بر نقش مهندسی عمران در ایجاد جامعه مقاوم در برابر بلایا تمرکز دارد. این کتاب تمام رشته های متنوع مهندسی عمران و حوزه های مرتبط (به عنوان مثال، مهندسی ژئوتکنیک، مهندسی منابع آب، مهندسی سازه، مهندسی حمل و نقل، مهندسی محیط زیست، مدیریت ساخت و ساز، GIS و سنجش از دور) را در جهت یک هدف مشترک تاب آوری در برابر بلایا از طریق گرد هم آورده است. یک رویکرد میان رشته ای این شامل روش ها و مطالعات موردی با تمرکز بر راه حل های مهندسی عمران برای کاهش خطر فاجعه است. محتویات کتاب در راستای اولویت های تعیین شده توسط چارچوب سازمان ملل متحد-سندای برای کاهش خطر بلایا و UN-SDGs برای ترویج فرهنگ جهانی آگاهی از خطرات و کاهش بلایا تنظیم شده است. این کتاب یک مرجع جامع مفید برای کاهش خطر بلایا برای دانشجویان مهندسی، اساتید تدریس، محققان، متخصصان صنعت و سیاست گذاران مفید خواهد بود.



توضیحاتی درمورد کتاب به خارجی

The book is a comprehensive volume on multi-hazards and their management for a sustainable built environment. It focuses on the role of civil engineering in building disaster resilient society. This book brings together all diverse disciplines of civil engineering and related areas (for example, geotechnical engineering, water resources engineering, structural engineering, transportation engineering, environmental engineering, construction management, GIS, and remote sensing) towards a common goal of disaster resilience through an interdisciplinary approach. It contains methods and case studies focusing on civil engineering solutions to reduce the disaster risk. The book contents are aligned in line with the priorities set by UN-Sendai Framework for Disaster Risk Reduction and UN-SDGs to promote a global culture of risk-awareness and disaster reduction. The book will be a useful comprehensive reference for disaster risk reduction beneficial for engineering students, teaching faculty, researchers, industry professionals and policymakers.




فهرست مطالب

Contents
About the Editors
1 Disaster Risk Reduction and Civil Engineering—An Introduction
	1.1 Background
	1.2 Terms and Definitions
	1.3 Civil Engineering and DRR
		1.3.1 Risks to Infrastructures
		1.3.2 Civil Engineering Applications in DRR
	1.4 Organization of the Book
		1.4.1 Water Security and Flood Risk
		1.4.2 Geohazards
		1.4.3 Resilient Infrastructures
		1.4.4 Disaster Risk and Resilience
	1.5 Summary
	References
Part I Water Security and Flood Risk
2 Satellite-Based Analysis of Groundwater Storage and Depletion Trends Implicating Climate Change in South Asia: Need for Groundwater Security
	2.1 Introduction
	2.2 Methods
	2.3 Results and Discussion
	2.4 Conclusion
	References
3 Use of Multi-sensor Satellite Remote Sensing Data for Flood and Drought Monitoring and Mapping in India
	3.1 Introduction
	3.2 Flood Monitoring Using Remote Sensing
		3.2.1 Applications of Optical Remote Sensing
		3.2.2 Application of Microwave Remote Sensing
		3.2.3 Application of a Combined Approach
	3.3 Drought Monitoring and Assessment
	3.4 Flood and Drought Risk Assessment
	3.5 Case Studies
		3.5.1 Case Studies for Flood Assessment
		3.5.2 Case Studies for Drought Assessment
		3.5.3 Advantages and Drawback of Research Methods and Comparative Assessment
	3.6 Conclusions
	References
4 Data- and Physics-Based Modeling of Backward Erosion Piping
	4.1 Introduction
	4.2 Physics-Based Model
		4.2.1 Model Parameters and Solution Strategy
	4.3 Data-Based Homogenization Scheme
		4.3.1 Data and Training
		4.3.2 First Layer—Classification Stage
		4.3.3 Second Layer—Regression Stage
		4.3.4 Data-Based Homogenization
	4.4 Numerical Results
		4.4.1 Physics-Based Model Validation
		4.4.2 Data-Based Model Validation
	4.5 Full-Scale Model and Computational Scenarios
	4.6 Conclusions
	References
5 Kerala Floods 2018: Causative Factors that Transformed Single Event to Multi-hazard Disaster
	5.1 Introduction
	5.2 Chronology of Events During Kerala Floods 2018
	5.3 Multi-hazard Impact Due to Spatial and Temporal Overlap
		5.3.1 Single Event
		5.3.2 Consequent Multi-hazard Events
		5.3.3 Subsequent Multi-hazard Events
		5.3.4 Simultaneous Multi-hazard Events
		5.3.5 Water Management in Spatially Distributed Dams
		5.3.6 Multi-hazard Interactions in Kerala Foods
	5.4 Impact Intensification: Unseen Interlacing of Heterogeneous Parameters
		5.4.1 Rain
		5.4.2 Urbanization
		5.4.3 Terrain
		5.4.4 Landslide
		5.4.5 Flood
	5.5 Results
		5.5.1 Multi-hazard Scenario
		5.5.2 Chronology of Multi-hazard Events
	5.6 Discussion—Reflections and Learning
	5.7 Conclusion
	References
6 River Flow Analysis—It Is So Easy, but It Isn’t?
	6.1 Introduction
	6.2 Case Study
	6.3 Discussion
	6.4 Conclusion
	References
7 Coastal Disasters and Mitigation Measures
	7.1 Introduction
	7.2 Coastal Vulnerability Assessment—Important Steps
	7.3 Long-Term and Short-Term Coastal Vulnerabilities and Its Impacts
		7.3.1 Long-Term Coastal Vulnerability
		7.3.2 Short-Term Coastal Vulnerability
	7.4 Mitigation Measures for Long-Term and Short-Term Coastal Vulnerabilities
		7.4.1 Mitigation Measures Based on the Management Principle: Do Nothing/Defend/Adopt and Retrieve
		7.4.2 Mitigation Strategy Based on “Reduce, Reuse and Recycle”
	7.5 Conclusions
	References
8 Tsunami Flood Risk Management
	8.1 Introduction
		8.1.1 The Development of Flood Risk Management
		8.1.2 Zones of Increasing Vulnerability
	8.2 Extension to Tsunami Events
		8.2.1 Hong Kong Practice
		8.2.2 Flood Frequency Analysis
		8.2.3 Tsunami Magnitude Ranking
	8.3 Numerical Model Analysis
		8.3.1 Numerical Model Analysis Validation: The Pukaki Canal
		8.3.2 Case Study: The 1947 Tatapouri Tsunami
	8.4 Proposed Definition of Incoming Tsunami “Wave Height”
		8.4.1 Solitary Wave Theory
		8.4.2 Deriving the Wave Height H
		8.4.3 Choice of Standard Depth
	8.5 Conclusions
	References
9 Cloudburst—A Major Disaster in The Indian Himalayan States
	9.1 Introduction
	9.2 Study Area
	9.3 Datasets and Methodology
		9.3.1 Cloudbursts Occurrences
		9.3.2 Dataset Collection
	9.4 Methodology to Assess the Cloudbursts
	9.5 Results and Discussion
		9.5.1 Climatic Factors
		9.5.2 Anthropogenic Activities
		9.5.3 Orographic Influence
	9.6 Conclusion
	References
Part II Geohazards
10 Review on Landslide Early Warning System: A Brief History, Evolution, and Controlling Parameters
	10.1 Introduction
	10.2 Landslide-Rainfall Relationship
	10.3 Landslide Monitoring and Instrumentation Techniques
	10.4 Laboratory Parametric Studies
	10.5 Principles of Developing a LEWS
	10.6 Conclusion
	References
11 Forecasting Landslides for Disaster Risk Reduction: Process-Based Approaches and Real-Time Field Monitoring
	11.1 Introduction
	11.2 Details of Study Area
	11.3 Rainfall Thresholds, Hydrological Model, and Field Monitoring Data
		11.3.1 Rainfall Thresholds
		11.3.2 SHETRAN Model
		11.3.3 Probabilistic Approach Using Rainfall Thresholds and Antecedent Soil Moisture
		11.3.4 Real-Time Field Monitoring
		11.3.5 Algorithm-Based Approach Using Rainfall Thresholds and Field Monitoring Data
	11.4 Validation
		11.4.1 Probabilistic Approach Using Rainfall Thresholds and Antecedent Soil Moisture
		11.4.2 Algorithm-Based Approach Using Rainfall Thresholds and Field Monitoring Data
	11.5 Conclusions
	References
12 Real-Time Monitoring System Based on Wireless Sensor Networks and Remote Sensing Techniques for Landslide-Prone Areas in the Northern Region of Thailand
	12.1 Introduction
	12.2 Landslide Monitoring System Based on Wireless Sensor Network and Visual IoT Camera System
		12.2.1 WSN-Based Landslide Monitoring System
		12.2.2 Image Fusion Method Used in Monitoring Landslide-Prone Areas with the Visual IoT Camera System
	12.3 Landslide Detection Based on Multi-temporal Satellite Imagery Analysis
		12.3.1 Change Detection in Multi-temporal Satellite Images Based on Structural Patch Decomposition and k-means Clustering
		12.3.2 Landslide Dectection Based on Faster R-CNN Model
	12.4 Rockfall Detection from LiDAR Point Clouds
		12.4.1 Clutter-Removal Algorithm Based on Grid Density
		12.4.2 Non-parametric, Density-Based Spatial Clustering of Applications with Noise (Non-parametric DBSCAN)
	12.5 Conclusion
	References
13 Perturbation of Earth Surface Process by Geophysical and Meteorological Process in the Nepal Himalaya
	13.1 Introduction
	13.2 Large-Scale Mass Movement
	13.3 Spatiotemporal Variation of Landslide
	13.4 Conclusion
	References
14 Post-earthquake Reconnaissance: Theories Versus Observations
	14.1 Introduction
	14.2 Ground Motion Characteristics
		14.2.1 The 2009 Padang Earthquake
		14.2.2 The 2011 Tohoku Earthquake
		14.2.3 The 2016 Muisne Earthquake
	14.3 Deficiencies in Reinforcement Detailing
		14.3.1 The 2009 Padang Earthquake
		14.3.2 The 2011 Tohoku Earthquake
		14.3.3 The 2016 Muisne Earthquake
	14.4 Soil Liquefaction
		14.4.1 The 2009 Padang Earthquake
		14.4.2 The 2011 Tohoku and 2016 Muisne Earthquakes
	14.5 Conclusion
	References
15 Estimation of Local Site Effects in Indian Scenario: Lessons from Past Earthquakes, Current Practices, and Future Trends
	15.1 Introduction
	15.2 Computational Methods to Estimate Local Site Effects
		15.2.1 Topographic Site Amplification
		15.2.2 Site Response Simulation
	15.3 Experimental Methods
		15.3.1 Macroseismic Observations
		15.3.2 Strong/Weak Motion Recordings
		15.3.3 Microtremor Survey
	15.4 Recommendation and Scope for Future Work
	References
Part III Resilient Infrastructures
16 Disaster Resilient Properties: Built Environment Discourse
	16.1 Introduction
	16.2 Literature Review
		16.2.1 The Concept of Disaster Resilience
		16.2.2 Role of the Built Environment
		16.2.3 Disaster Resilient Properties
	16.3 Methodology
	16.4 Discussion
		16.4.1 Resilient Properties
		16.4.2 Role of the Built Environment in Embedding Disaster Resilient Properties
	16.5 Conclusion
	References
17 Multiple Benefits of Blue-Green Infrastructure and the Reduction of Environmental Risks: Case Study of Ecosystem Services Provided by a SUDS Pond
	17.1 Introduction
		17.1.1 Site Description
	17.2 Hydrology
		17.2.1 Simulation of Extreme Events
	17.3 Water Chemistry
	17.4 Hydrobiological Patterns and Biological Water Quality
	17.5 Discussion
	17.6 Conclusion
	References
18 Static and Seismic Assessment of Soil Arching in Piled Embankments
	18.1 Introduction
	18.2 Finite Element Analysis
		18.2.1 General Description
		18.2.2 Boundary Condition, Meshing, Interaction and Seismic Input
		18.2.3 Soil Constitutive Model and Material Damping
		18.2.4 Loading on the Embankment Top
		18.2.5 Modeling Procedure
	18.3 Results and Discussions
		18.3.1 Vertical Stress Distribution in the Embankment Fill
		18.3.2 Settlement in Embankment Fill
		18.3.3 Effect of Key Parameters of Piled Embankment on Soil Arching Ratio
		18.3.4 Effect of the Earthquake on Soil Arching
		18.3.5 Review of Available Design Approaches
	18.4 Practical Implications
	18.5 Summary
	References
19 Vulnerability of Interspersed Railway Tracks Exposed to Flood and Washaway Conditions
	19.1 Introduction
	19.2 Methodology and Data
		19.2.1 Track Modelling
		19.2.2 Engineering Properties
		19.2.3 Risk Exposures to Flood and Washaway Conditions
	19.3 Results and Discussions
	19.4 Conclusion
	References
20 Modeling to Support Acceleration of Restoration of a Residential Building System in Southeastern B.C. Due to Riverine Flooding
	20.1 Introduction
	20.2 Methodology
		20.2.1 Building Damage Scenarios and Restoration Schemes
		20.2.2 Restoration Time Calculation
		20.2.3 Restoration Dependencies
		20.2.4 Restoration Prioritizing
	20.3 Case Study Results and Discussion
		20.3.1 Case Study Area and Building Selection
		20.3.2 Optimized Recovery Pathway
		20.3.3 Complete Building Recovery
		20.3.4 Building Function and Component Recovery
		20.3.5 Future Work
	20.4 Conclusion
	References
21 Vibration Isolation of Foundation Systems Using Geosynthetics Barriers
	21.1 Introduction
	21.2 Material Characterization
	21.3 Particulars of Field Vibration Test
	21.4 Results and Discussion
	21.5 Conclusions
	References
22 Response Reductions in Base-Isolated Liquid Storage Tank Under Far and Near Field Seismic Excitations
	22.1 Introduction
	22.2 Theory
	22.3 Numerical Study
	22.4 Results and Discussions
		22.4.1 Shear Force
		22.4.2 Overturning Moment
		22.4.3 Hydrodynamic Pressure
		22.4.4 Sloshing Height
	22.5 Conclusions
	References
23 Estimating Service-Life Deterioration of RC Bridges Due to Multi-hazards in Barak Valley Region, Assam, India
	23.1 Introduction
	23.2 Condition Assessment Method and Condition Rating Technique
	23.3 Combined Survivability of Maturity and Earthquake Impact
	23.4 Results and Conclusions
	References
24 Seismic Strengthening Solutions for Existing Buildings
	24.1 Introduction
	24.2 Framework for Structural Vulnerability Assessment and Seismic Strengthening of Existing RMG Buildings
	24.3 Seismic Strengthening of RCF Buildings in Bangladesh
	24.4 Seismic Strengthening of URM Buildings in Iran
	24.5 Advanced Methods of Seismic Strengthening
	24.6 Conclusions
	References
25 On Structural Rehabilitation and Retrofitting for Risk Reduction
	25.1 Introduction
	25.2 Design, Repair, Rehabilitation and Retrofitting of Structures for Reduce Risk/Disaster
	25.3 Discussions and Conclusions
	References
Part IV Disaster Risk and Resilience
26 Integrated Cost and Risk Management Enhancing Supply Chain Resilience
	26.1 Introduction
	26.2 Classification of Supply Chain Risks
	26.3 Examination of Existing Strategies to Enhance Resilience
	26.4 Integrated Cost and Risk Management Approach
		26.4.1 Effective Way of Cost Analysis for Supply Chain Resilience Strategies
		26.4.2 Strategic Cost Management—Useful Techniques
	26.5 Conclusion
	References
27 Modelling Climate Change and Glacier Melt for Sustainable Development of a Himalayan Region
	27.1 Introduction
		27.1.1 Climate Change, Glacier Melt, and Sustainable Development Planning
		27.1.2 State of the Art (Informetric Analysis)
	27.2 Approach (System Dynamics)
		27.2.1 Methodology
		27.2.2 Population and Sampling Method/Design
		27.2.3 Survey Tools
		27.2.4 Analytical Tools and Techniques
	27.3 Application of System Dynamics Model
		27.3.1 Models (Stock-Flow)
		27.3.2 Model Result
		27.3.3 Model Validation
		27.3.4 Forecasting
		27.3.5 Recommended Policy and Discussion
	27.4 Conclusion
	References
28 Lessons from a Century-Tradition on Ecosystem-Based Disaster Risk Reduction (Eco-DRR) in Mountains: The Case of the Torrential System Los Arañones (Canfranc, Pyrenees)
	28.1 Introduction
	28.2 Los Arañones: A Century History of Eco-DRR in the Spanish Pyrenees
	28.3 Natural Hazards and Infrastructures in Los Arañones
	28.4 Current and Future Performance of Los Arañones
	28.5 Conclusions
	References
29 Filling in the Gaps of the Tsunamigenic Sources in 2018 Palu Bay Tsunami
	29.1 Introduction
	29.2 Methodology
		29.2.1 Analysis of the Existing Landslide Data
		29.2.2 Landslide-Generated Tsunami Wave Propagation
		29.2.3 Adjustments in Wave Characteristics
	29.3 Results
	29.4 Conclusions and Future Work
	References
30 Demystifying Impacts of Cyclone Amphan 2019 Amid COVID-19 Pandemic in West Bengal, India
	30.1 Introduction
	30.2 Objectives
	30.3 The Super-Cyclone Amphan
		30.3.1 Pre-landfall Preparation and Evacuation by the Administration
		30.3.2 Amphan Impact
		30.3.3 Damage to Houses and Infrastructure
	30.4 COVID-19 in West Bengal
	30.5 Governance and Legal Frameworks for Amphan and COVID-19 Management
		30.5.1 Disaster Management Act of 2005
		30.5.2 The Epidemic Diseases Act of 1897
		30.5.3 National Disaster Management Guideline for Management of Biological Disaster 2008
		30.5.4 National Disaster Management Plan 2019
	30.6 Response Measures for Amphan
		30.6.1 Measures and Guidelines to Combat COVID-19 Outbreak
		30.6.2 Relation of Amphan and COVID-19
		30.6.3 Response Measures Amid COVID-19 Situation
	30.7 Discussion
	30.8 Conclusion
	References
31 Resilient Urbanism from the Perspective of Climate Change in Spain—The Case of Floods
	31.1 Concepts and Characteristics of Resilient Urbanism
	31.2 Climate Change and the Main Manifestations in Spain
	31.3 The Case of the Floods in Spain and the Principal Mechanisms Applied to Be Resilient
	31.4 Case Studies
	31.5 Conclusions
	References




نظرات کاربران