دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: نویسندگان: Sadhan Kumar Ghosh, Sannidhya Kumar Ghosh, Benu Gopal Mohapatra, Ronald L. Mersky سری: The Circular Economy in Sustainable Solid and Liquid Waste Management ISBN (شابک) : 1032108967, 9781032108964 ناشر: CRC Press سال نشر: 2021 تعداد صفحات: 250 [251] زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 49 Mb
در صورت تبدیل فایل کتاب Circular Economy in the Construction Industry به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب اقتصاد دایره ای در صنعت ساخت و ساز نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
اقتصاد دایره ای در صنعت ساخت و ساز منبع ارزشمندی برای محققان، سیاست گذاران، مجریان و دانشجویان مقطع دکترا و کارشناسی ارشد در دانشگاه ها است که وضعیت فعلی زباله های ساخت و ساز و تخریب (C&DW) را تحلیل می کنند. مدیریت، توسعه مواد با استفاده از سرباره، خاکستر بادی، الیاف HDPE، ضایعات زمین و سایر ضایعات، بتن سبز، تثبیت خاک، گردش منابع در بخش های ساختمانی، موفقیت در آزمایش و تولید تجاری، نیازهای آینده، و زمینه های تحقیقاتی آینده. در حالی که C&DW عظیم با تخلیه هدر می رود، پتانسیل بازیافت برای جلوگیری از انتشار گازهای گلخانه ای (GHG) و آلودگی محیط زیست و همچنین ایجاد فرصت های تجاری وجود دارد. گردش منابع در صنعت ساخت و ساز می تواند از طریق ابزارهای سیاستی مناسب، سیستم های مدیریتی و بازیافت با انتخاب موارد زیر به آینده ای امن تر، پایدارتر و از نظر اقتصادی سالم تر کمک کند:
این کتاب به بسیاری از موضوعات فوق به روشی شفاف توسط متخصصان این حوزه از کشورهای مختلف پرداخته است که برای ذینفعان مرتبط مفید است و توسط متخصصان این حوزه ویرایش شده است.
Circular Economy in the Construction Industry is an invaluable resource for researchers, policymakers, implementers and PhD and Masters-level students in universities analyzing the present status of Construction and Demolition Wastes (C&DW) management, materials development utilizing slag, fly ash, HDPE fibre, geo-wastes, and other wastes, green concrete, soil stabilization, resource circulation in construction sectors, success in experimentation & commercial production, future needs, and future research areas. While huge C&DW is wasted by dumping, there is potential of recycling preventing greenhouse gas (GHG) emissions and environmental pollution as well as creating business opportunities. Circularity of resources in the construction industry can contribute to a more secure, sustainable, and economically sound future through proper policy instruments, management systems, and recycling by selecting the following:
This book addresses most of the above issues in a lucid manner by experts in the field from different countries, which are helpful for the related stakeholders, edited by experts in the field.
Cover Half Title Series Page Title Page Copyright Page Table of Contents Foreword Preface Acknowledgements Editors Contributors Part I: Sustainable Construction Practices and Circular Economy Chapter 1: Circular Economy in Combating Construction and Demolition Wastes Including Seismic Debris 1.1 Introduction 1.2 Construction and Demolition Waste (C&D) Generation Including Disasters Debris 1.3 Management and Recycling 1.4 C&DW Legislation 1.5 Discussion, Analysis, and Conclusion Acknowledgement References Chapter 2: Circular Economy in Construction:: An Overview with Examples from Materials Research 2.1 Background 2.2 Introduction 2.3 Circular Economy and Construction Industry 2.4 Examples—Novel Construction Materials 2.4.1 Limestone-Calcined Clay (LCC) Pozzolana and Cement 2.4.2 ‘Smart’ Composites 2.4.3 Recycled PET Fibre Reinforced Cementitious Composite 2.5 Summary and Discussion 2.6 Conclusions and Recommendations Acknowledgments Notes References Chapter 3: Use of Industrial Waste Slag in the Development of Self-Compacting Concrete for Sustainable Infrastructures 3.1 Introduction 3.2 Industrial Slag 3.3 Self-Compacting Concrete 3.4 Experimental Program 3.4.1 Materials 3.4.2 Mix Design 3.5 Results and Discussions 3.5.1 Fresh Properties 3.5.1.1 Self-Compactability Properties 3.5.1.2 T 50 Flow Time and V-Funnel Time 3.5.2 Blocking Ratio (L-box test) 3.5.3 HRWR Demand 3.5.4 Hardened Properties 3.5.4.1 Compressive Strength 3.6 Conclusions References Chapter 4: Influence of Functionally Graded Region in Ground Granulated Blast Furnace Slag (GGBS) Layered Composite Concrete 4.1 Introduction 4.2 Literature Review 4.3 Aim of the Study 4.4 Experimental Program 4.4.1 Materials 4.4.2 Mix Proportion 4.4.3 Specimens Preparation 4.5 Procedure 4.6 Results and Discussion 4.6.1 Compressive Strength 4.6.2 SEM and EDX Analysis 4.7 Conclusion References Chapter 5: Utilization of Fly Ash as a Replacement of Sand in Concrete for Sustainable Construction 5.1 Introduction 5.2 Literature Review 5.3 Materials and Methods 5.3.1 Cement 5.3.2 Aggregates 5.3.2.1 Fine Aggregate 5.3.2.2 Coarse Aggregate 5.3.2.3 Fly Ash 5.3.3 Mix Proportions 5.3.4 Preparation and Casting of Test Specimens 5.4 Test Results and Discussion 5.4.1 Fresh Properties 5.4.2 Compressive Strength 5.4.3 Split Tensile Strength 5.5 Conclusions References Chapter 6: Properties of Concrete at Elevated Temperature Using Waste HDPE as Fibre and Copper Slag as Mineral Admixture 6.1 Introduction 6.2 Literature Review 6.3 Methodology 6.4 Result and Discussions 6.4.1 Slump Test 6.4.2 Mechanical Properties 6.4.2.1 Compressive Strength 6.4.2.2 Split Tensile Strength 6.4.2.3 Flexural Strength 6.5 Effect of Elevated Temperature 6.5.1 Loss of Weight 6.5.2 Colour Change and Appearance 6.5.3 Compressive Strength 6.6 Effect of Elevated Temperature on Durability 6.6.1 Sorptivity at Elevated Temperatures 6.6.2 Water Absorption After Applying Elevated Temperature 6.7 Conclusions References Chapter 7: Utilization of Geo-Waste in Production of Geo-Fiber Papercrete Bricks 7.1 Introduction 7.1.1 Objectives 7.2 Methodology 7.2.1 Materials 7.3 Experimental Procedure 7.3.1 Preparation of Paper Pulp 7.3.2 Fabrication of the Mold 7.3.3 Casting of Papercrete Cubes and Bricks 7.4 Testing and Results 7.5 Discussion 7.6 Conclusion Acknowledgement References IS Codes Referred Chapter 8: Effect of Slag Addition on Compressive Strength and Microstructural Features of Fly Ash Based Geopolymer 8.1 Introduction 8.2 Materials and Methods 8.2.1 Materials 8.2.2 Methods 8.3 Results and Discussion 8.4 Conclusions Acknowledgements References Chapter 9: Impacts of Municipal Solid Waste Heavy Metals on Soil Quality: A Case of Visakhapatnam 9.1 Introduction 9.2 Study Site History 9.3 Materials and Methods 9.3.1 Sample Collection 9.3.2 Metal Extraction Procedure 9.3.3 Geo-Accumulation Index (I geo) 9.4 Results and Discussion 9.4.1 Lead 9.4.2 Nickel 9.4.3 I geo 9.5 Conclusions Acknowledgements References Chapter 10: Effective Utilization of Industry Solid Waste into the Concrete and Its Management 10.1 Introduction 10.2 Materials Properties 10.2.1 Cement 10.2.2 Aggregates 10.2.3 Sugar Cane Bagasse Ash 10.2.4 Marble Slurry Dust 10.3 Mixture Proportioning 10.4 Experimental Methodology 10.4.1 Test on Fresh Concrete 10.4.2 Test on Hardened Concrete and Mortar 10.4.3 Compressive Strength of Concrete 10.5 Experimental Results and Discussions 10.5.1 Workability of Fresh Concrete 10.5.2 Compressive Strength of Concrete 10.5.3 Compressive Strength of Mortar 10.6 Conclusions References Chapter 11: Utilization of Industrial Waste in Normal Concrete: A Review 11.1 Introduction 11.2 Fresh Property of Waste Materials 11.2.1 Workability of Industrial Waste 11.3 Mechanical Property 11.3.1 Effect of Waste Materials on Compressive Strength of Concrete 11.3.2 Effect of Waste Materials on Tensile Strength and Flexural Strength of Concrete 11.4 Conclusion References Chapter 12: Greenhouse Effect by Investigating an Internal Combustion Engine (IC Engine) Using Argemone Mexicana (Waste Plant) Biodiesel Blends 12.1 Introduction 12.2 Material and Methods 12.2.1 Oil Preparation Process 12.2.2 Biodiesel Properties 12.2.3 Experimental Procedure 12.3 Results and Discussions 12.3.1 Performance Analysis 12.3.2 Emission Analysis 12.4 Conclusions References Chapter 13: Fertiliser Plant Phosphogypsum:: Potential Applications in Agriculture and Road Construction 13.1 Introduction 13.2 Materials and Methodology 13.2.1 Experimental Materials 13.2.2 Experimental Methodology 13.3 Results and Discussion 13.3.1 Development of Zypmite Product 13.3.1.1 Advantages of Zypmite Product 13.3.2 Phosphogypsum as Road Construction Material 13.3.2.1 Neutralisation of Phosphogypsum 13.4 Conclusion Acknowledgement References Part II: Waste Utilization and Soil Stabilization Chapter 14: Bearing Capacity of Reinforced Soil on Varying Footing Size 14.1 Introduction 14.2 Model Footing Test 14.3 Model Test Results and Discussion 14.4 Conclusion References Chapter 15: Improvement of Properties of an Expansive Soil with Induction of Bacteria 15.1 Introduction 15.2 Experiment Investigations 15.2.1 Materials 15.2.1.1 Soil 15.2.1.2 Bacteria 15.3 Tests Conducted 15.3.1 Atterberg Limits 15.3.2 Unconfined Compression Strength Test 15.3.3 Soil Surface Morphology 15.3.4 pH Value 15.4 Test Results 15.5 Plasticity Characteristics 15.6 Strength 15.7 pH Value 15.8 Micro Studies 15.9 Conclusions References Chapter 16: Application of Treated Mixed Fruit Wastes in Soil Stabilization 16.1 Introduction 16.2 Methodology 16.3 Atterberg Limits 16.4 Conclusion References Chapter 17: Development of Flexible Pavement Cost Models for Weak Subgrade Stabilized with Fly Ash and Lime 17.1 Introduction 17.2 Methodology 17.2.1 Fly Ash 17.2.2 Use of Lime 17.2.3 SPSS and Cost Modeling 17.3 Specifications of IRC 17.3.1 Subgrade Soil 17.3.2 Liquid Limit 17.3.3 Plasticity Index 17.3.4 Density Requirement 17.3.5 CBR 17.4 Economic Analysis 17.5 Discussion and Conclusion References Chapter 18: Use of Fly Ash and Lime for Attainment of CN Properties in a Swelling Soil 18.1 Introduction 18.2 Experimental Work 18.2.1 Methods Adopted 18.3 Tests Results and Discussion 18.4 Liquid Limit 18.5 Compressive Strength 18.6 Swelling Pressure @ OMC 18.7 Compression Index @ OMC 18.8 Compression Index @ LL 18.9 Conclusions References Chapter 19: Interface Shear Strengths between Bagasse Ash and Geogrid 19.1 Introduction 19.2 Testing Materials 19.2.1 Bagasse Ash 19.3 Geogrid 19.4 Testing Methods 19.5 Results and Discussion 19.5.1 Direct Shear Test Results 19.6 Interface Shear Test Results 19.7 Friction Efficiency Factors (EФ) 19.8 Conclusion Acknowledgment References Part III: Sustainable Green Concrete Chapter 20: Experimental Investigation on Geopolymer Concrete with Low-Density Aggregate 20.1 Introduction 20.2 Materials and Method 20.2.1 Fly Ash 20.2.2 Fine Aggregates 20.2.3 Coarse Aggregate 20.2.4 Low-Density Aggregate 20.3 Alkaline Solutions 20.4 Mixing, Casting and Curing 20.5 Result and Discussion 20.5.1 Workability 20.5.2 Density ( ρ) 20.5.3 Compressive Strength (CS) 20.5.4 Split Tensile Strength 20.5.5 Flexural Strength 20.6 Conclusion References Chapter 21: Strength Development in Ferrochrome Ash-Based Geopolymer Concrete 21.1 Introduction 21.2 Materials and Methods 21.2.1 Materials 21.2.2 Methods of Manufacturing Geopolymer Concrete 21.3 Results and Discussions 21.3.1 Workability 21.4 Compressive Strength 21.4.1 Effect of Source Materials and Extra Water 21.4.2 Effect of Curing Temperature on Strength Development 21.4.3 Efflorescence 21.5 Conclusions Acknowledgments References Chapter 22: Investigation on Strength Factor of Composite Concrete Using Quarry Dust and Artificial Aggregates 22.1 Introduction 22.2 Materials and Methods 22.2.1 Quarry Dust 22.3 Comparison of Coarse Aggregate and Artificial Aggregate 22.4 Experimental Programme for the Present Study 22.5 Experimental Work 22.6 Discussions and Conclusions References Chapter 23: Clean C&D Waste Material Cycles through BIM-Enhanced Building Stock Examination Practices:: An Austrian Case Study 23.1 Introduction 23.1.1 Pre-Demolition Waste Audit 23.1.2 Optimisation Strategy 23.2 Objectives 23.3 Methodology 23.3.1 Data Capturing 23.3.1.1 Digital Scanning of Spatial Geometry 23.3.1.2 Determination of Material Compositions 23.3.2 Data Modelling 23.3.2.1 Database Assignment and Query 23.4 Findings and Result 23.4.1 Innovative 3D Scan-Technologies 23.4.2 Manual as-Built BIM Modelling 23.4.3 Transferability and Efficiency 23.4.3.1 Level of Development 23.4.3.2 Structure Intricacy Dependent Performance 23.5 Summary and Outlook References Chapter 24: Fly Ash-Based Jute Fiber Reinforced Concrete:: A Go Green Approach for the Concrete Industry 24.1 Introduction 24.2 Background of the Study 24.3 Problem Description 24.4 Experimental Program 24.5 Conclusion References Part IV: Energy Recovery and Resource Circulation in Construction Chapter 25: A Study on Tensile Strength and Modulus Properties of Concrete Using Industrial Waste Vermiculite and Granite-Fines 25.1 Introduction 25.1.1 General 25.1.2 Present Work 25.1.3 Research Objectives 25.1.4 Review of Literature 25.2 Materials and Methods 25.2.1 Materials 25.2.2 Methods 25.2.2.1 Split Tensile Strength 25.2.2.2 Test on Modulus of Elasticity 25.3 Research Methodology 25.4 Results and Discussion 25.4.1 General 25.4.2 Effect of Granite Fines on Split Tensile Strength 25.4.3 Modulus of Elasticity 25.4.4 X-Ray Powder Diffraction Analysis 25.5 Conclusion References Chapter 26: Eco-Friendly Utilization of Industrial Sludge as a Building Material:: A Study of Steel Industries in the Tarapur Region, Maharashtra 26.1 Introduction 26.2 Study Area 26.3 Materials and Methodology 26.3.1 Materials 26.3.2 Methodology 26.4 Results and Analysis 26.5 Conclusion References Index