دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 3
نویسندگان: John Semmlow
سری: Biomedical Engineering
ISBN (شابک) : 9780128093955
ناشر: Academic Press
سال نشر: 2018
تعداد صفحات: 757
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 45 مگابایت
در صورت تبدیل فایل کتاب Circuits, Signals and Systems for Bioengineers به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب مدارها، سیگنال ها و سیستم ها برای مهندسین زیستی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
مدارها، سیگنالها و سیستمها برای مهندسین زیستی: مقدمه مبتنی بر MATLAB، ویرایش سوم، خواننده را از طریق اصول مهندسی برق که میتواند در سیستمهای بیولوژیکی اعمال شود، راهنمایی میکند. این جزئیات مفاهیم اولیه مهندسی را که زیربنای سیستمهای بیوپزشکی، دستگاههای پزشکی، کنترل زیستی و آنالیز سیگنالهای زیستپزشکی است، ارائه میکند و یک پایه محکم برای دانشجویان در مفاهیم مهم مهندسی زیستی فراهم میکند. ویرایش سوم که برای پاسخگویی بهتر به نیازهای مدرسان و دانشآموزان بهطور کامل اصلاح و به روز شده است، مفاهیمی را از طریق روشهای محاسباتی معرفی و توسعه میدهد که به دانشآموزان اجازه میدهد عملیاتهایی مانند همبستگی، کانولوشن، تبدیل فوریه و تابع انتقال را کشف کنند. فصلهای جدیدی در مورد تجزیه و تحلیل تصویر، نویز، فرآیندهای تصادفی و ارگودیسیته اضافه شدهاند و مثالها و کاربردهای پزشکی جدید در سراسر متن گنجانده شدهاند.
Circuits, Signals and Systems for Bioengineers: A MATLAB-Based Introduction, Third Edition, guides the reader through the electrical engineering principles that can be applied to biological systems. It details the basic engineering concepts that underlie biomedical systems, medical devices, biocontrol and biomedical signal analysis, providing a solid foundation for students in important bioengineering concepts. Fully revised and updated to better meet the needs of instructors and students, the third edition introduces and develops concepts through computational methods that allow students to explore operations, such as correlations, convolution, the Fourier transform and the transfer function. New chapters have been added on image analysis, noise, stochastic processes and ergodicity, and new medical examples and applications are included throughout the text.
Series-Page_2018_Circuits--Signals-and-Systems-for-Bioengineers Series page Front-Matter_2018_Circuits--Signals-and-Systems-for-Bioengineers Circuits, Signals, and Systems for Bioengineers Copyright_2018_Circuits--Signals-and-Systems-for-Bioengineers Copyright Dedication_2018_Circuits--Signals-and-Systems-for-Bioengineers Dedication Preface-to-the-Third-Editio_2018_Circuits--Signals-and-Systems-for-Bioengine Preface to the Third Edition New to This Edition Ancillaries Acknowledgments_2018_Circuits--Signals-and-Systems-for-Bioengineers Acknowledgments Chapter-1---The-Big-Picture--Bioengineeri_2018_Circuits--Signals-and-Systems 1. The Big Picture: Bioengineering Signals and Systems 1.1 Why Biomedical Engineers Need to Analyze Signals and Systems 1.1.1 Goals of This Book 1.2 Biosignal: Signals Produced by Living Systems 1.2.1 Biological Signal Sources 1.2.2 Biotransducers and Common Physiological Measurements 1.2.3 Signal Representation: Continuous (Analog) Signals Versus Discrete (Digital) Signals 1.2.3.1 Analog Signals 1.2.3.2 Digital Signals 1.2.3.2.1 Time Sampling 1.2.3.2.2 Quantization 1.2.3.3 Time and Frequency Domains 1.2.4 Two-Dimensional Signals ∼ Images 1.3 Noise 1.3.1 Biological Noise Sources 1.3.2 Noise Properties: Additive Gaussian Noise 1.3.2.1 Electronic Noise 1.3.2.1.1 Johnson Noise 1.3.2.1.2 Shot Noise 1.4 Biological Systems 1.4.1 Deterministic Versus Stochastic Signals and Systems 1.4.1.1 Chaotic Signals and Systems 1.4.1.2 Fractal Signals and Images 1.4.2 Deterministic Signal Properties: Periodic, Aperiodic, and Transient 1.4.2.1 Time-Invariant Versus Nonstationary Signals and Systems 1.4.3 Causal Versus Noncausal Signals and Systems 1.4.4 Linear Versus Nonlinear Signals and Systems 1.4.5 Biosystems Modeling 1.4.5.1 Analog Models 1.4.5.2 Systems Models (Transfer Function Models) 1.5 Summary Problems Chapter-2---Signal-Analysis-in-the-_2018_Circuits--Signals-and-Systems-for-B 2. Signal Analysis in the Time Domain 2.1 GOALS OF THIS CHAPTER 2.2 TIME DOMAIN MEASUREMENTS 2.2.1 Mean and Root Mean Squared Signal Measurements 2.2.1.1 Decibels 2.2.1.2 Signal-to-Noise Ratio 2.2.2 Variance and Standard Deviation 2.2.3 Averaging for Noise Reduction 2.2.4 Ensemble Averaging 2.3 THE BASIC WAVEFORM: SINUSOIDS 2.3.1 Sinusoids as Real-Valued Signals 2.3.2 Complex Representation of Sinusoids 2.4 TIME DOMAIN ANALYSIS 2.4.1 Comparison Through Correlation 2.4.2 Orthogonal Signals and Orthogonality 2.4.3 Correlations Between Signals 2.4.4 Shifted Correlations: Cross-correlation 2.4.4.1 Zero Padding 2.4.4.2 Cross-correlating Signals Having Different Lengths 2.4.5 Autocorrelation 2.4.6 Autocovariance and Cross-covariance 2.5 SUMMARY PROBLEMS Chapter-3---Signal-Analysis-in-the-Frequency-Doma_2018_Circuits--Signals-and 3. Signal Analysis in the Frequency Domain: The Fourier Series and the Fourier Transformation 3.1 GOALS OF THIS CHAPTER 3.2 TIME–FREQUENCY DOMAINS: GENERAL CONCEPTS 3.3 TIME–FREQUENCY TRANSFORMATION OF CONTINUOUS SIGNALS 3.3.1 Sinusoidal Properties in the Time and Frequency Domains 3.3.2 Sinusoidal Decomposition: The Fourier Series 3.3.3 Fourier Series Analysis and the Fourier Transform 3.3.4 Finding the Fourier Coefficients 3.3.5 Symmetry 3.3.6 Complex Representation 3.3.7 The Continuous Fourier Transform 3.4 TIME–FREQUENCY TRANSFORMATION IN THE DISCRETE DOMAIN 3.4.1 The Discrete Fourier Transform 3.4.2 MATLAB Implementation of the Discrete Fourier Transform 3.4.3 Details of the DFT Spectrum 3.4.3.1 DFT Spectral Redundancy 3.4.3.2 Phase Wrapping 3.4.3.3 The Effect of Time Shifts on the Fourier Transform 3.4.3.4 Respiratory Example 3.4.4 The Inverse Discrete Fourier Transform 3.5 SUMMARY PROBLEMS Chapter-4---Signal-Analysis-in-the-Frequency-_2018_Circuits--Signals-and-Sys 4. Signal Analysis in the Frequency Domain—Implications and Applications 4.1 GOALS OF THIS CHAPTER 4.2 DATA ACQUISITION AND STORAGE 4.2.1 Data Sampling: The Sampling Theorem 4.2.2 Amplitude Slicing—Quantization 4.2.3 Data Truncation 4.2.3.1 Data Length and Spectral Resolution 4.2.4 Data Truncation—Window Functions 4.3 POWER SPECTRUM 4.4 SPECTRAL AVERAGING 4.5 SIGNAL BANDWIDTH 4.6 TIME–FREQUENCY ANALYSIS 4.7 SUMMARY PROBLEMS Chapter-5---Linear-Systems-Analysis-in-the_2018_Circuits--Signals-and-System 5. Linear Systems Analysis in the Time Domain—Convolution 5.1 GOALS OF THIS CHAPTER 5.2 LINEAR SYSTEMS ANALYSIS—AN OVERVIEW 5.2.1 Superposition and Linearity 5.3 A SLICE IN TIME: THE IMPULSE SIGNAL 5.3.1 Real-World Impulse Signals 5.3.2 The Impulse Signal in the Frequency Domain 5.4 USING THE IMPULSE RESPONSE TO FIND A SYSTEMS OUTPUT TO ANY INPUT—CONVOLUTION 5.4.1 Finding the Impulse Response 5.4.2 MATLAB Implementation 5.5 APPLIED CONVOLUTION—BASIC FILTERS 5.6 CONVOLUTION IN THE FREQUENCY DOMAIN 5.6.1 Data Sampling Revisited 5.7 SUMMARY PROBLEMS Chapter-6---Linear-Systems-in-the-Frequency_2018_Circuits--Signals-and-Syste 6. Linear Systems in the Frequency Domain: The Transfer Function 6.1 Goals of This Chapter 6.2 Systems Analysis Models 6.3 The Response of System Elements to Sinusoidal Inputs: Phasor Analysis 6.4 The Transfer Function 6.4.1 The Spectrum of a Transfer Function 6.5 The Spectrum of System Elements: The Bode Plot 6.5.1 Constant Gain Element 6.5.2 Derivative Element 6.5.3 Integrator Element 6.5.4 First-Order Element 6.5.5 Second-Order Element 6.6 Bode Plots Combining Multiple Elements 6.6.1 Constructing the Transfer Function From the System Spectrum 6.7 The Transfer Function and the Fourier Transform 6.8 Summary Problems Chapter-7---Linear-Systems-in-the-Complex-Fre_2018_Circuits--Signals-and-Sys 7. Linear Systems in the Complex Frequency Domain: The Laplace Transform 7.1 GOALS OF THIS CHAPTER 7.2 THE LAPLACE TRANSFORM 7.2.1 Definition of the Laplace Transform 7.2.2 Calculus Operations in the Laplace Domain 7.2.3 Sources—Common Signals in the Laplace Domain 7.2.4 Converting the Laplace Transform to the Frequency Domain 7.2.5 The Inverse Laplace Transform 7.3 THE LAPLACE DOMAIN TRANSFER FUNCTION 7.3.1 Time Delay Element: The Time Delay Theorem 7.3.2 Constant Gain Element 7.3.3 Derivative Element 7.3.4 Integrator Element 7.3.5 First-Order Element 7.3.5.1 The Characteristic Equation 7.3.6 Second-Order Element 7.3.6.1 Second-Order Elements With Real Roots 7.3.6.2 Partial Fraction Expansion—Manual Methods 7.3.6.3 Partial Fraction Expansion—MATLAB 7.3.6.4 Second-Order Processes With Complex Roots 7.3.7 Higher-Order Transfer Functions 7.4 NONZERO INITIAL CONDITIONS—INITIAL AND FINAL VALUE THEOREMS 7.4.1 Nonzero Initial Conditions 7.4.2 Initial and Final Value Theorems 7.5 THE LAPLACE DOMAIN, THE FREQUENCY DOMAIN, AND THE TIME DOMAIN 7.6 SYSTEM IDENTIFICATION 7.7 SUMMARY PROBLEMS Chapter-8---Analysis-of-Discrete-Linear-Systems_2018_Circuits--Signals-and-S 8. Analysis of Discrete Linear Systems—The z-Transform and Applications to Filters 8.1 GOALS OF THIS CHAPTER 8.2 THE Z-TRANSFORM 8.2.1 The Unit Delay 8.2.2 The Digital Transfer Function 8.2.3 Transformation From the z-Domain to the Frequency Domain 8.3 DIFFERENCE EQUATIONS 8.4 LINEAR FILTERS—INTRODUCTION 8.4.1 Filter Properties 8.4.1.1 Filter Bandwidth 8.4.1.2 Filter Type 8.4.1.3 Filter Attenuation Slope—Filter Order 8.4.1.4 Filter Initial Sharpness 8.4.2 Finite Impulse Response Versus Infinite Impulse Response Filter Characteristics 8.4.3 Causal and Noncausal Filters 8.5 DESIGN OF FINITE IMPULSE RESPONSE FILTERS 8.5.1 Derivative Filters—The Two-Point Central Difference Algorithm 8.5.2 Determining Cutoff Frequency and Skip Factor 8.6 FINITE IMPULSE RESPONSE AND INFINITE IMPULSE RESPONSE FILTER DESIGN USING THE SIGNAL PROCESSING TOOLBOX 8.6.1 Finite Impulse Response Filter design 8.6.2 Designing Infinite Impulse Response Filters 8.7 SUMMARY PROBLEMS Chapter-9---System-Simulation-and-_2018_Circuits--Signals-and-Systems-for-Bi 9. System Simulation and Simulink 9.1 Goals of This Chapter 9.2 Digital Simulation of Continuous Systems 9.3 Introduction to Simulink 9.3.1 Model Specification and Simulation 9.3.2 Complex System Simulations 9.4 Improving Control System Performance: The PID controller 9.5 Biological Examples 9.5.1 Stolwijk–Hardy Model of Glucose–Insulin Concentrations 9.5.2 Model of the Neuromuscular Motor Reflex 9.5.3 The Makay and Glass Model of Neutrophil Density 9.6 Summary Problems Chapter-10---Stochastic--Nonstationary--and_2018_Circuits--Signals-and-Syste 10. Stochastic, Nonstationary, and Nonlinear Systems and Signals 10.1 Goals of This Chapter 10.2 Stochastic Processes: Stationarity and Ergodicity 10.3 Signal Nonlinearity 10.3.1 Fractal Dimension 10.3.1.1 State Variables and State Space 10.3.1.2 Delay Embedding 10.3.1.3 Correlation Dimension 10.3.2 Information-Based Methods 10.3.2.1 Sample Entropy 10.3.2.2 Multiscale Entropy 10.3.2.2.1 Data Scaling Through Coarse Graining 10.3.3 Detrended Fluctuation Analysis 10.4 Summary Problems Detrended Fluctuation Analysis Chapter-11---Two-Dimensional-Signals-Ba_2018_Circuits--Signals-and-Systems-f 11. Two-Dimensional Signals—Basic Image Analysis 11.1 Goals of This Chapter 11.2 Image Format and Display 11.3 The Two-Dimensional Fourier Transform 11.3.1 MATLAB Implementation 11.4 Linear Filtering 11.4.1 Convolution in Two Dimensions 11.4.2 Linear Image Filters 11.4.3 Linear Filter Application 11.5 Image Segmentation 11.5.1 Pixel-Based Methods 11.5.1.1 Threshold Level Adjustment 11.5.2 Edge Detection 11.5.3 Continuity-Based Methods 11.5.3.1 Texture Analysis and Nonlinear Filtering 11.6 Summary Problems Chapter-12---Circuit-Elements-and-Cir_2018_Circuits--Signals-and-Systems-for 12. Circuit Elements and Circuit Variables 12.1 Goals of This Chapter 12.2 System Variables: The Signals of Electrical and Mechanical Systems 12.2.1 Electrical and Mechanical Variables 12.2.2 Voltage and Current Definitions 12.3 Analog System Versus General Systems 12.4 Electrical Elements 12.4.1 Passive Electrical Elements 12.4.1.1 Energy Users: Resistors 12.4.1.2 Energy Storage Devises: Inductors and Capacitors 12.4.1.2.1 Inductor 12.4.1.2.2 Capacitor 12.4.1.3 Electrical Elements: Reality Check 12.4.2 Electrical Elements: Active Elements or Sources 12.4.3 The Fluid Analogy 12.5 Phasor Analysis 12.5.1 Phasor Representation—Electrical Elements 12.6 Laplace Domain—Electrical Elements 12.6.1 Electrical Elements With Zero Initial Conditions 12.6.2 Nonzero Initial Conditions 12.7 Summary: Electrical Elements 12.8 Mechanical Elements 12.8.1 Passive Mechanical Elements 12.8.2 Elasticity 12.8.3 Mechanical Sources 12.8.4 Phasor Analysis of Mechanical Systems: Mechanical Impedance 12.8.5 Laplace Domain Representations of Mechanical Elements With Nonzero Initial Conditions 12.9 Summary Problems Chapter-13---Analysis-of-Analog-Circu_2018_Circuits--Signals-and-Systems-for 13. Analysis of Analog Circuits and Models 13.1 Goals of This Chapter 13.2 Conservation Laws: Kirchhoff's Voltage Law 13.2.1 Mesh Analysis: Single Loops 13.2.2 Mesh Analysis: Multiple Loops 13.2.2.1 Shortcut Method for Multimesh Circuits 13.2.3 Mesh Analysis: MATLAB Implementation 13.3 Conservation Laws: Kirchhoff's Current Law—Nodal Analysis 13.4 Conservation Laws: Newton's Law—Mechanical Systems 13.5 Resonance 13.5.1 Resonant Frequency 13.5.2 Resonant Bandwidth, Q 13.6 Summary Problems Chapter-14---Circuit-Reduction--Simp_2018_Circuits--Signals-and-Systems-for- 14. Circuit Reduction: Simplifications 14.1 Goals of the Chapter 14.2 System Simplifications—Passive Network Reduction 14.2.1 Series Electrical Elements 14.2.2 Parallel Elements 14.2.2.1 Combining Two Parallel Impedances 14.3 Network Reduction—Passive Networks 14.3.1 Network Reduction—Successive Series–Parallel Combination 14.3.1.1 Resonance Revisited 14.3.2 Network Reduction—Voltage–Current Method 14.4 Ideal and Real Sources 14.4.1 The Voltage–Current or v–i Plot 14.4.2 Real Voltage Sources—The Thévenin Source 14.4.3 Real Current Sources 14.4.4 Thévenin and Norton Circuit Conversion 14.5 Thévenin and Norton Theorems: Network Reduction With Sources 14.6 Measurement Loading 14.6.1 Ideal and Real Measurement Devices 14.6.2 Maximum Power Transfer 14.7 Mechanical Systems 14.8 Multiple Sources—Revisited 14.9 Summary Problems Chapter-15---Basic-Analog-Electronics--O_2018_Circuits--Signals-and-Systems- 15. Basic Analog Electronics: Operational Amplifiers 15.1 Goals of This Chapter 15.2 The Amplifier 15.3 The Operational Amplifier 15.4 The Noninverting Amplifier 15.5 The Inverting Amplifier 15.6 Practical Op Amps 15.6.1 Limitations in Transfer Characteristics of Real Operational Amplifiers 15.6.1.1 Bandwidth 15.6.1.2 Stability 15.6.2 Input Characteristics 15.5.2.1 Input Voltage Sources 15.6.2.2 Input Current Sources 15.6.2.3 Input Impedance 15.6.3 Output Characteristics 15.7 Power Supply 15.8 Operational Amplifier Circuits or 101 Things to Do With an Operational Amplifier 15.8.1 The Differential Amplifier 15.8.2 The Adder 15.8.3 The Buffer Amplifier 15.8.4 The Transconductance Amplifier5 15.8.5 Analog Filters 15.8.6 Instrumentation Amplifier 15.9 Summary Problems Appendix-A---Derivations_2018_Circuits--Signals-and-Systems-for-Bioengineers A - Derivations Appendix-B---Laplace-Transforms-and-Propert_2018_Circuits--Signals-and-Syste B - Laplace Transforms and Properties of the Fourier Transform Appendix-C---Trigonometric-and-Othe_2018_Circuits--Signals-and-Systems-for-B C - Trigonometric and Other Formulae Appendix-D---Conversion-Factors-_2018_Circuits--Signals-and-Systems-for-Bioe D - Conversion Factors: Units Appendix-E---Complex-Arithmet_2018_Circuits--Signals-and-Systems-for-Bioengi E - Complex Arithmetic Appendix-F---LF356-Specificati_2018_Circuits--Signals-and-Systems-for-Bioeng F - LF356 Specifications Appendix-G---Determinants-and-Cram_2018_Circuits--Signals-and-Systems-for-Bi G - Determinants and Cramer's Rule Bibliography_2018_Circuits--Signals-and-Systems-for-Bioengineers Bibliography Index_2018_Circuits--Signals-and-Systems-for-Bioengineers Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z