دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش:
نویسندگان: Olivier Binda (editor)
سری: Translational Epigenetics
ISBN (شابک) : 0128137967, 9780128137963
ناشر: Academic Press
سال نشر: 2019
تعداد صفحات: 358
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 10 مگابایت
در صورت تبدیل فایل کتاب Chromatin Signaling and Neurological Disorders به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب سیگنالینگ کروماتین و اختلالات عصبی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
سیگنالینگ کروماتین و اختلالات عصبی، جلد هفتم، درک کنونی ما را در مورد نحوه تنظیم دسترسی به اطلاعات ژنتیکی سیگنالینگ کروماتین و اینکه چگونه تنظیم ناهنجار آنها می تواند به اختلالات عصبی کمک کند را بررسی می کند. محققان، دانشجویان و پزشکان نه تنها پایه محکمی بر رابطه بین سیگنال دهی کروماتین و اختلالات عصبی به دست خواهند آورد، بلکه روش هایی را نیز برای تفسیر بهتر و به کارگیری مطالعات تشخیصی جدید و درمان های مبتنی بر اپی ژنتیک کشف خواهند کرد. طیف متنوعی از فصول از کارشناسان بین المللی در مورد اساس کروماتین و مسیرهای سیگنالینگ اپی ژنتیک و فاکتورهای سیگنال دهی کروماتین خاص که طیف وسیعی از بیماری ها را تنظیم می کنند صحبت می کند.
علاوه بر علم پایه فاکتورهای سیگنال دهی کروماتین، هر فصل خاص بیماری به اهمیت ترجمه یا بالینی یافته های اخیر، همراه با مفاهیم مهم برای توسعه درمان های مبتنی بر اپی ژنتیک صحبت می کند. مضامین مشترک اهمیت ترجمهای نیز در انواع بیماریها و همچنین پتانسیل آینده تحقیقات سیگنالینگ کروماتین شناسایی شده است.
Chromatin Signaling and Neurological Disorders, Volume Seven, explores our current understanding of how chromatin signaling regulates access to genetic information, and how their aberrant regulation can contribute to neurological disorders. Researchers, students and clinicians will not only gain a strong grounding on the relationship between chromatin signaling and neurological disorders, but they'll also discover approaches to better interpret and employ new diagnostic studies and epigenetic-based therapies. A diverse range of chapters from international experts speaks to the basis of chromatin and epigenetic signaling pathways and specific chromatin signaling factors that regulate a range of diseases.
In addition to the basic science of chromatin signaling factors, each disease-specific chapter speaks to the translational or clinical significance of recent findings, along with important implications for the development of epigenetics-based therapeutics. Common themes of translational significance are also identified across disease types, as well as the future potential of chromatin signaling research.
Cover Translational Epigenetics Series Chromatin Signaling and Neurological Disorders Copyright Contributors Preface Chromatin and epigenetics Chromatin signaling and neurological diseases References 1. Chromatin and epigenetic signaling pathways 1.1 Chromatin signaling and epigenetics 1.2 Chromatin organization 1.3 Histone posttranslational modifications and the histone code 1.4 Functions of histone posttranslational modifications 1.5 DNA methylation 1.6 Writers, erasers, and readers 1.6.1 Histone writers 1.6.2 DNA writers 1.6.3 Histone erasers 1.6.4 DNA erasers 1.6.5 Histone readers 1.6.6 DNA readers 1.7 Modification cross talk 1.8 Effects of metabolism on histone and DNA modifications 1.9 Epigenetic inheritance 1.10 Summary References Section 1: Neurodegenerative disorders 2. Into the unknown: chromatin signaling in spinal muscular atrophy 2.1 Spinal muscular atrophy: prevalence, genetic basis, clinical features, and pathogenesis 2.2 The survival motor neuron protein: localization, structure, and function 2.3 Epigenetic landscape in spinal muscular atrophy pathogenesis 2.4 Targeting epigenetic factors as potential therapeutics in spinal muscular atrophy 2.4.1 Histone deacetylase inhibitors as regulators of the survival motor neuron gene 2.4.2 The nonspecific effect of histone deacetylase inhibitors 2.4.3 The potential protective effect of histone deacetylase inhibitors in the pathogenesis of spinal muscular atrophy 2.5 Conclusion Acronyms and abbreviations Acknowledgments References 3. Charcot-Marie-Tooth disease 3.1 Introduction 3.2 Epigenetic regulation of Schwann cell development 3.3 Epigenetic regulation of dosage-sensitive genes 3.4 Epigenetic regulators targeted by CMT mutations 3.4.1 DNMT1 3.4.2 LMNA 3.4.3 SYNE1 3.4.4 MED25 3.4.5 SETX 3.4.6 MORC2 3.4.7 PRDM12 3.5 Novel mechanisms for CMT mutations 3.6 Summary Acknowledgments References 4. Epigenetic mechanisms in Huntington's disease 4.1 Introduction 4.2 Huntington's disease 4.2.1 Neuropathology of HD 4.3 Transcriptional dysregulation in HD 4.4 Altered epigenetic marks in HD 4.4.1 Histone modifications 4.4.1.1 Histone acetylation 4.4.1.2 Histone acetylation alterations in HD 4.4.1.3 Histone methylation 4.4.1.4 Histone methylation changes in HD 4.4.1.5 Histone phosphorylation 4.4.1.6 Histone phosphorylation and HD 4.4.1.7 Histone ubiquitination 4.4.1.8 Altered histone ubiquitination in HD 4.4.2 DNA methylation 4.4.3 DNA methylation changes in HD 4.4.3.1 Global DNA methylation changes 4.4.3.2 Gene-specific DNA methylation changes 4.4.3.3 Implicating DNA methylation enzymes 4.5 Epigenetic-based therapies 4.5.1 HDAC inhibitors as a treatment for HD 4.5.2 Methylation-inhibiting drugs 4.6 Concluding remarks 4.7 Abbreviations References 5. The epigenetics of multiple sclerosis 5.1 Multiple sclerosis, the knowns and the unknowns 5.1.1 A chronic progressive disease of the central nervous system 5.1.2 The genetics of MS 5.1.3 Gender bias and parent-of-origin effect 5.1.4 A role for environmental factors 5.1.5 A viral component in MS 5.2 MS as an epigenetic disorder 5.2.1 Nongenetic causes of MS and their link to chromatin and transcription 5.2.1.1 Vitamin D and the vitamin D receptor 5.2.1.2 Reactivation of HERVs 5.2.2 DNA and histone modifications are footprints of transcriptional regulation 5.3 DNA and histone modifications linked to MS 5.3.1 DNA methylation 5.3.1.1 Imprinting 5.3.1.2 Differential methylation in blood cells and in CNS 5.3.1.3 Cytosine hydroxymethylation 5.3.2 A possibly reduced efficiency of the H3K9me/HP1 axis of transcriptional repression in MS 5.3.2.1 Reduced recruitment of HP1 at HERVs and proinflammatory genes in patients with MS 5.3.2.2 Peptidylarginine deiminases interfere with the H3K9me/HP1 axis of transcriptional repression 5.3.2.3 The H3K9me/HP1 axis: a central player in the onset of MS? 5.4 Epigenetics beyond transcription 5.4.1 Exosomal miRNA silencing 5.4.2 Microbiota 5.4.3 Environment: pollutants that may interfere with silencing machineries 5.5 Conclusions Acknowledgments References 6. Alterations in epigenetic regulation contribute to neurodegeneration of ataxia-telangiectasia 6.1 Decreased level of histone acetylation induced by nuclear accumulation of HDAC4 drives A-T neurodegeneration 6.2 Dysfunction of polycomb repressive complex 2 involved in A-T neurodegeneration 6.3 Selective loss of 5-hmC is associated with purkinje cell vulnerability in A-T brain 6.4 TETs-mediated DNA oxidation regulates ATM/ATR-dependent DDR 6.5 Conclusion 6.6 Future perspective Acknowledgments References 7. Cockayne syndrome 7.1 Clinical phenotypes 7.1.1 Classical (moderate) type I cockayne syndrome 7.1.2 Early-onset (severe) subtypes 7.1.3 Late-onset subtypes 7.2 Genetics 7.3 CSA and CSB proteins 7.4 Cellular and molecular aspects 7.5 The molecular basis of neurodegeneration 7.6 Concluding remarks References 8. Epigenetic processes in Alzheimer's disease 8.1 Alzheimer's disease: a need for new drug targets 8.2 Alzheimer's disease: the genomic era 8.3 An additional layer of information: Alzheimer's disease from an epigenetic perspective 8.3.1 DNA modifications 8.3.2 Histone modifications 8.3.3 Regulatory RNA–based mechanisms 8.3.4 Epigenetic signatures as blood biomarkers 8.4 Modeling Alzheimer's disease: mouse models as powerful tools 8.5 Current challenges and future directions 8.6 Final considerations References Section 2: Neurodevelopmental disorders 9. Genetic and epigenetic influences on the phenotype of Rett syndrome 9.1 Introduction 9.2 The genetic cause of Rett syndrome 9.3 The biology of MeCP2 9.3.1 Neurobiology of MeCP2 9.3.2 Molecular functioning of MeCP2 9.4 The phenotype of Rett syndrome 9.4.1 Early development and regression 9.4.2 Diagnostic criteria 9.4.3 Functional impairments 9.4.4 Stereotypies 9.4.5 Comorbidities 9.4.6 Epidemiology 9.5 Evidence for epigenetic mechanisms affecting MECP2 function and expression 9.5.1 DNA methylation 9.5.2 Histone modifications and nucleosome and higher-order chromatin remodeling 9.5.3 Noncoding RNAs 9.5.4 RNA splicing 9.6 Epigenetic regulation of MeCP2 expression or phenotypes 9.6.1 X chromosome inactivation 9.6.2 IGF1/mTOR pathway 9.6.3 Enriched environments 9.7 Inclusion of epigenetic data collection in epidemiological studies 9.8 Summary References 10. Sotos syndrome 10.1 Introduction 10.2 The genetic basis of Sotos syndrome 10.3 Comparing Sotos syndrome with other single-gene overgrowth syndromes 10.4 Neurological profile of Sotos syndrome 10.5 The cognitive and behavioral profile of Sotos syndrome 10.5.1 Cognition 10.5.1.1 Intellectual ability 10.5.1.2 Sotos syndrome cognitive profile 10.5.1.3 Language 10.5.2 Behavior 10.5.2.1 Attention-deficit/hyperactivity disorder 10.5.2.2 Anxiety 10.5.3 Aggression and tantrums 10.6 Sotos syndrome and autism spectrum disorder 10.7 Nuclear receptor–binding SET domain methyltransferases modify histones and affect epigenetics 10.8 Limitations and future research directions 10.9 Summary and conclusions References 11. ATRX tames repetitive DNA within heterochromatin to promote normal brain development and regulate oncogenesis 11.1 Introduction 11.2 Biochemical and molecular functions of ATRX 11.2.1 ATRX protein structure 11.2.2 ATRX is a heterochromatin interacting protein 11.2.3 Other critical interactions and functions of ATRX 11.2.4 ATRX interactions with RNA 11.3 Neurologic deficits and phenotypic variability in ATRX-associated syndromes 11.4 Delineating a role for ATRX in cancer 11.4.1 Cancer profiling identifies ATRX as a common mutation target 11.4.2 Cancers with ATRX mutations are alternative lengthening of telomere positive 11.4.3 Understanding the alternative lengthening of telomeres pathway 11.4.4 ATRX is a suppressor of the alternative lengthening of telomeres pathway 11.5 Conclusion List of abbreviations References Section 3: Neuropsychiatric disorders 12. Epigenetic dysregulation in the fragile X-related disorders 12.1 Introduction 12.2 Clinical features of the FXDs 12.2.1 Fragile X syndrome 12.2.2 Fragile X-associated tremor/ataxia syndrome 12.2.3 Fragile X-associated primary ovarian insufficiency 12.3 Genetics of the FXDs 12.4 The pathological basis of FXTAS 12.5 The pathological basis of FXPOI 12.6 The pathological basis of FXS 12.7 Epigenetic abnormalities associated with the FXDs 12.8 Resolving the repeat paradox 12.9 Prospects and challenges for epigenetic therapies for the FXDs 12.10 Concluding remarks Grant Sponsor References 13. The epigenetics of autism 13.1 Autism 13.1.1 Heritability and genetics 13.2 Epigenetics of autism 13.2.1 DNA methylation and hydroxymethylation in autism 13.2.1.1 Candidate gene methylation studies in humans 13.2.1.2 Methylome-wide association studies 13.2.2 Histone modifications 13.2.2.1 Histone methylation and acetylation 13.2.2.2 Chromatin modifying and remodeling complexes 13.2.3 Risk factors affecting the epigenetics of autism 13.2.3.1 Hormones 13.3 Discussion Acknowledgments References 14. Chromatin modification and remodeling in schizophrenia 14.1 Introduction 14.2 SZ GWAS implicate gene expression and chromatin regulation as a possible causal molecular mechanism 14.3 SZ and DNA methylation 14.3.1 Aberrant DNA methylation in SZ 14.3.2 Genetic control of DNA methylation and its relevance to SZ 14.4 SZ and histone modifications 14.4.1 Histone acetylation 14.4.2 Histone methylation 14.5 SZ and 2D chromatin structure 14.6 SZ and higher-order chromatin structure 14.7 SZ genetic risk variants affect chromatin remodeling gene pathway 14.7.1 Analysis of common SZ variants implicates the dysregulated chromatin-signaling pathway 14.7.2 Rare SZ coding risk variants and chromatin remodeling 14.7.3 SZ-associated CNVs and abnormal chromatin organization 14.8 hiPSC model combined with CRISPR editing for studying SZ-relevant chromatin function 14.8.1 hiPSC-derived neurons as a cellular model for neurodevelopmental disorder 14.8.2 CRISPR-based approaches for genome/epigenome perturbation 14.8.3 CRISPR-based 2D and 3D chromatin perturbation relevant to SZ in hiPSC models 14.9 Therapeutic drugs that target chromatin structure and activity in SZ 14.10 Conclusion and perspectives Acknowledgments References 15. Gilles de la Tourette syndrome 15.1 Introduction: Gilles de la Tourette syndrome and other tic disorders 15.1.1 Definition and diagnostic criteria of Gilles de la Tourette syndrome and other tic disorders 15.1.2 Epidemiology 15.2 Clinical presentation of tics 15.2.1 Shared characteristics of tics 15.2.2 Characteristics of motor tics 15.2.3 Characteristics of vocal/phonic tics 15.2.4 Characteristics of cognitive tics 15.3 Tic-related behavioral symptoms and health-related quality of life 15.3.1 Behavioral spectrum of Gilles de la Tourette syndrome 15.3.2 Obsessive–compulsive disorder 15.3.3 Attention-deficit and hyperactivity disorder 15.3.4 Health-related quality of life 15.4 Etiology and pathophysiology 15.4.1 Genetic factors 15.4.2 Environmental factors 15.4.3 Role of dopamine and cortico-striato-thalamo-cortical pathways 15.4.4 Possible role of chromatin regulation 15.5 Treatment strategies 15.5.1 Psychoeducation 15.5.2 Behavioral therapy 15.5.3 Pharmacotherapy 15.5.4 Other approaches 15.6 Conclusions: open questions and suggestions for future research Acknowledgments References Index A B C D E F G H I K L M N O P R S T U V W X Z Back Cover