ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Chemistry solutions to challenges in the petroleum industry

دانلود کتاب راه حل های شیمی برای چالش های صنعت نفت

Chemistry solutions to challenges in the petroleum industry

مشخصات کتاب

Chemistry solutions to challenges in the petroleum industry

ویرایش:  
نویسندگان: ,   
سری: ACS symposium series 1320 
ISBN (شابک) : 9780841234512, 0841234515 
ناشر: American Chemical Society 
سال نشر: 2019 
تعداد صفحات: 363 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 50 مگابایت 

قیمت کتاب (تومان) : 45,000

در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد



کلمات کلیدی مربوط به کتاب راه حل های شیمی برای چالش های صنعت نفت: شیمی، فنی، کلریدها--تجزیه و تحلیل، امولسیون ها، هگزان ها--تجزیه و تحلیل، میکروسکوپ، نیروی اتمی، نیتروژن، روغن ها--تجزیه و تحلیل، نفت، نفت--پالایش، هیدروکربن های معطر چند حلقه ای E--تجزیه و تحلیل، پراکندگی SCHMALONGTEY، / نفت، اشعه ایکس، کتاب های الکترونیک، نفت -- پالایش، هیدروکربن های آروماتیک چند حلقه ای -- تجزیه و تحلیل، روغن ها -- تجزیه و تحلیل، هگزان ها -- تجزیه و تحلیل، کلریدها -- تجزیه و تحلیل



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 12


در صورت تبدیل فایل کتاب Chemistry solutions to challenges in the petroleum industry به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب راه حل های شیمی برای چالش های صنعت نفت نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی درمورد کتاب به خارجی



فهرست مطالب

Chemistry Solutions to Challenges in the Petroleum Industry......Page 2
Chemistry Solutions to Challenges in the Petroleum Industry......Page 4
Library of Congress Cataloging-in-Publication Data......Page 5
Foreword......Page 6
The Role of Compatibility in Determining the Blending and Processing of Crude Oils......Page 8
Subject Index......Page 9
Preface......Page 10
Asphaltenes Implication in the Petroleum Industry......Page 11
Heavy Oils/Bitumen and Crude Oil Refinery Processing Issues......Page 12
Detection and Removal of Contaminants during Petroleum Processing......Page 13
Acknowledgments......Page 14
Upstream Treatments for Improved Production......Page 16
From Design to Practice: Development of New Acid Platforms To Address Upstream Oil and Gas Production Challenges......Page 18
Introduction......Page 19
Sandstone Stimulation: Where Do We Stand?......Page 20
Carbonate Stimulation: Minerology and Acid Selection......Page 21
Figure 2. Schematic shown to illustrate the benefit of using delayed acid release technologies as a pathway to achieve deeper stimulation into the reservoir. Adapted with permission from reference 65. Copyright 2016 Society of Petroleum Engineers, RTI International.......Page 23
Figure 3. Optical microscopy images of (A) the as-prepared acid-encapsulated core-shell particles and (B,C) SEM images showing particles prepared via the WOW double emulsion method. The shells are polymerized with a urethane acrylate and the cores contain 20 wt % HCl. All scale bars represent 100 µm. Reproduced with permission from reference 65. Copyright 2016 Society of Petroleum Engineers, RTI International.......Page 24
Acid Selection and Considerations......Page 25
Acid Selection and Performance Evaluation......Page 26
Figure 6. Computed tomography (CT) images for the 12-inch acidized Indiana limestone core samples for LVAS-1 (top) and LVAS-2 (bottom) following PVBT studies. Reproduced with permission from reference 71. Copyright 2018 Offshore Technology Conference.......Page 27
Oxidation-Triggered In Situ Acid Generation Using Ammonium-Based Salts......Page 28
Figure 8. Summary of results for the static hydrothermal reaction of NH4Cl with NaBrO3: Impact of stoichiometry on acid generation whereby the concentration of NH4Cl was varied while NaBrO3 (5 mmol) remained constant. Notably, the optimal ratio was determined to be 2NH4+:1BrO3-. Adapted with permission from reference 80. Copyright 2019 American Chemical Society.......Page 29
Abbreviations......Page 30
References......Page 31
1 Introduction......Page 38
2 A Brief Overview of the Use of Microemulsions To Remove Crude Oil Residue from Solid Surfaces......Page 39
3.2 Microfluidics Test......Page 40
3.4 Crude Oils......Page 41
4.1.1 Soaking Time......Page 42
Figure 3. The impact of salinity on the removal of crude oil residue from sand using the Shaken Bottle method.......Page 43
Figure 4. The percentage of residue removal from three different crude oil residues using a d-limonene microemulsion containing cationic, nonionic and anionic surfactants using the Shaken Bottle method. DTAB–based ME using Crude Oil 3 resulted in no detectable removal. (DTAB: dodecyl trimethyl ammonium bromide).......Page 44
Figure 6. The impact of ME and SP concentration on the removal of crude oil residue from the microfluidic device.......Page 45
Figure 7. The impact of the solvent type on the ability of 0.2 vol % ME to remove crude oil residue from the microfluidic device.......Page 46
Figure 8. SARA analysis of the residues before any treatment from each method.......Page 47
Acknowledgments......Page 48
References......Page 49
Asphaltenes Implication in the Petroleum Industry......Page 52
Similarities in Diverse Polycyclic Aromatic Hydrocarbons of Asphaltenes and Heavy Oils Revealed by Noncontact Atomic Force Microscopy: Aromaticity, Bonding, and Implications for Reactivity......Page 54
1 Overview of Molecular Characterization Techniques......Page 55
2 Introduction to Molecular Imaging with STM/nc-AFM......Page 56
Figure 1. Photograph of a low-temperature ultrahigh-vacuum STM/AFM for imaging organic molecules with a functionalized CO tip. (Courtesy of CreaTec Fischer & Co. GmbH.)......Page 57
4.1 Overview of the AFM Structures......Page 58
Figure 2. Chemical structures of petroleum molecules from AFM imaging. Reproduced with permission from reference 37. Copyright 2017 American Chemical Society.......Page 64
Figure 3. Representative detailed molecular structures from AFM imaging with geometries optimized by DFT calculations. The chemical structure is shown along with side and top views of the conformation of each structure.......Page 65
Figure 4. Classification of nonalternant and alternant polycyclic aromatic hydrocarbons by the star–unstar approach.......Page 66
Figure 5. Electron counting rules for describing the aromaticity of monocyclic species is different from those used for PAHs. Hückel’s 4n + 2 rule applies for monocyclic systems (such as benzene) only and cannot be used for PAHs. The addition of Platt’s perimeter rule (which traces only the peripheral carbons, shown in bold) makes PAHs consistent with the 4n + 2 rule.......Page 67
Figure 6. Petroleum structures identified by AFM imaging have three or fewer linear rings.......Page 68
4.4 Local Aromaticity of PAHs......Page 69
Figure 8. Local aromaticities (in ppm) calculated according to NICS(1) (NICS 1 Å above the center of each ring) computed at the B3LYP/6-311G(d,p) level. Color schemes are relatively more aromatic in blue, nonaromatic in green, and more antiaromatic in red.......Page 70
4.6 UV-Vis Absorption Spectroscopy......Page 71
Figure 11. UV-vis spectra of selected PAHs predicted by TD-DFT calculations on the AFM structures.......Page 72
Figure 12. Computation of bond orders with natural molecular orbitals. (a) Scale of bond orders calibrated on the basis of some aromatic molecules with calculated bond orders shown for the specific bond locations indicated in red. (b) Bonds with the highest bond orders in a selection of PAH molecules shown in red. Reproduced with permission from reference 40. Copyright 2018 American Chemical Society.......Page 73
References......Page 74
Ultra-Small-Angle X-Ray Scattering as a Probe of Petroleum Heterogeneities from the Nano- to the Macroscale......Page 82
Introduction......Page 83
Figure 1. Capillary deposition results of asphaltenes. (A) A simplified schematic of the deposition apparatus and the pressure drop across the capillary measures the extent of deposition. (B) Optical micrographs of the apparatus effluent (Collection) as a function of the heptane concentrations. (C) The pressure drop recorded as a function of time and heptane concentration. Adapted with permission from Reference 17. Copyright 2013 American Chemical Society.......Page 84
Figure 2. Structural hierarchy of insoluble asphaltenes and structures probed by the length scales accessible by USAXS: (A) micrograph of insoluble asphaltenes, (B) insoluble asphaltene floc, (C) insoluble asphaltene particle, (D) surface properties of insoluble particle, and (E) internal structure. (F) Schematic of typical experimental results for a sample with insoluble (USAXS regime) and soluble (SAXS regime) asphaltenes, and the properties measured for each length scale.......Page 86
Small-Angle Scattering Theory......Page 87
Figure 3. Schematic of the various structures that can be related to Porod slopes and the insight gained into the mechanism for formation.......Page 89
Other Applications of USAXS......Page 90
Figure 4. Time-resolved USAXS results of asphaltenes in toluene after 46.5 vol.% heptane is added to the mixture. Clear differentiation between the scattering of the insoluble and soluble asphaltenes was observed, indicating that the distributions can be characterized independently. Reproduced with permission from Reference 38. Copyright 2018 American Chemical Society.......Page 91
Figure 5. Model fits for insoluble asphaltenes presented in Figure 4. (a) The radius of gyration, (b) MW, (c) Porod slope, and (d) a cross plot of MW vs Rg are presented. Reproduced with permission from Reference 38. Copyright 2018 American Chemical Society.......Page 92
Figure 6. Schematic of the precipitation mechanism and structure of insoluble asphaltenes. Individual insoluble asphaltene-rich liquid droplets form with a rough surface that slowly transitions to a smooth one (left). These particles then flocculate into fractal clusters (right) instead of coalescing. Reproduced with permission from Reference 38. Copyright 2018 American Chemical Society.......Page 93
Figure 7. USAXS scattering results for the model oil diluted with 57 vol.% heptane with inhibitors DDPh and NPFR at concentrations of (a) 500 ppm and (b) 5000 ppm at a time of 48 min after heptane addition. The K-ratio calculation procedure is also highlighted in (b). Reproduced with permission from Reference 39. Copyright 2018 American Chemical Society.......Page 94
Figure 8. K-ratio results for inhibitors DDPh and NPFR at concentrations of (a) 500 and (b) 5000 ppm with a heptane concentration of 57 vol.%. Reproduced with permission from Reference 39. Copyright 2018 American Chemical Society.......Page 95
Figure 10. Porod slopes of insoluble asphaltenes with 57 vol.% heptane as a function of time with inhibitors DDPh and NPFR at concentrations of (a) 500 ppm and (b) 5000 ppm (b). Reproduced with permission from Reference 39. Copyright 2018 American Chemical Society.......Page 96
References......Page 97
Introduction......Page 104
The Nature of the Intermolecular Forces in Asphaltenes......Page 105
Figure 1. Depiction of the interaction of two permanent dipoles. Unlike the London force, the allowed geometry of the two interaction molecular dipoles determines if this interaction is additive, subtractive, or something in between.......Page 109
Experimental and Theoretical Results......Page 110
Figure 3. This hydrogen-deficient molecule found in an asphaltene mixture, identified by AFM 19, can be thought to be a graphene flake.......Page 111
Figure 4. Using the cleavage energy for separating layers of graphite, it is possible to produce a simple model for intermolecular interaction based on the number of aromatic rings.......Page 112
Figure 5. Enthalpy of PAH dimer formation can be estimated from the number of PAH rings. Reproduced with permission from reference 26. Copyright 2014 American Chemical Society.......Page 113
Figure 6. Enthalpy of PAH stack formation can be estimated from the number of PAH monomer units. Reproduced with permission from reference 26. MP2 and ωB97X-D are defined in the Glossary. Copyright 2014 American Chemical Society.......Page 114
Figure 8. Correlation of the binding energy of heterogeneous PAH dimer as a function of the reduced mass of the dimer. Reproduced with permission from reference 28. Copyright 2008 American Chemical Society.......Page 115
Figure 9. Intermolecular energy of PAH dimers as a function of the number of rings (top) and the number carbon atoms per molecule (bottom). Closed circles: using area of molecule; open circles: DFT/PBE-D3 SV(P); gray circles: DFT/PBE-D3/def2-TZVP. Molecules used: pyrene, coronene, hexabenzocoronene, circumcoronene, circumcircumcoronene. See the Glossary for definitions of calculation methods and basis sets. DFT data from Silva et al. 29.......Page 116
Figure 10. Intermolecular energy of PAH dimers as a function of the molar mass (top) and the number aromatic rings per molecule (bottom). Closed circles: using area of molecule; open circles: MP2 SV(P). Molecules used: pyrene, coronene, hexabenzocoronene, circumcoronene, circumcircumcoronene. MP2 data from Silva et al. 29.......Page 117
Figure 11. The four dominant crystal structures observed for polycyclic aromatic hydrocarbons: a) sandwich, b) herringbone, c) γ, d) β.......Page 118
Figure 12. The most stable nanoaggregate arrangement consisting of coronene molecules is not always a vertically arranged stack of aromatic cores. (a)–(c) show the most stable configuration to the least stable configuration. (d) shows the total binding energy for a coronene nanoaggregate consisting of 32 coronene molecules. Reproduced with permission from reference 30. Copyright 2005 American Chemical Society.......Page 119
Figure 13. Crystal structures for three substituted azacoronenes that resemble asphaltene molecules. Substitution does not necessarily impede π–π stacking. Reproduced with permission from reference 35. Copyright 2015 Royal Society of Chemistry.......Page 120
Figure 14. Three molecules observed in the AFM work by Schuler et al. 19 are allowed to interact and equilibrate to an energy minimum via an AM1 force field. The presence of heteroatoms (red: oxygen; yellow: sulfur; blue: nitrogen; carbon: cyan; hydrogen not shown) and alkyl substituents do not alter the dominant effect of π–π stacking.......Page 121
Glossary......Page 122
References......Page 123
Heavy Oils/Bitumen and Crude Oil Refinery Processing Issues......Page 128
Viscosity of Canadian Oilsands Bitumen and Its Modification by Thermal Conversion......Page 130
Introduction......Page 131
Materials......Page 135
Equipment and Procedures......Page 136
Figure 1. Experimental procedures and related characterization techniques followed in this work. L, liquid; S, solid.......Page 137
Viscosity......Page 139
Free-Radical Concentration......Page 140
Elemental Analysis......Page 141
Asphaltene Content......Page 142
Analysis of Gaseous Products by Gas Chromatography......Page 143
Product Work-Up without Solvent......Page 144
Product Work-Up with Methylene Chloride......Page 145
Product Work-Up with Toluene......Page 146
Observations about Product Yield......Page 148
Viscosity of the Thermally Converted Products with Reaction Time: No Solvent Used......Page 149
Figure 3. Rate of change of viscosity with respect to reaction time for the thermally converted samples. The plot on the right shows the same data with an expanded y axis to visualize the details.......Page 150
Figure 4. Comparison of the viscosities of the straight thermally converted products with those of the products extracted with methylene chloride. The plot on the right shows the same data with an expanded y axis to visualize the details.......Page 151
Figure 5. Comparison of the viscosities of the straight thermally converted products with those of the products extracted with toluene. The plot on the right shows the same data with an expanded y axis to visualize the details.......Page 152
Density and Refractive Index......Page 153
Figure 6. Densities and refractive indexes of the straight thermally converted liquid products (without solids) obtained at different reaction times. All values were measured at 40 °C.......Page 154
Figure 7. EPR spectrum of the thermally converted bitumen obtained at 400 °C and 15 min without dissolution in solvent. The parallel (pl) and perpendicular (pp) features of the vanadyl peaks are indicated, along with the organic-free-radical line.......Page 155
Figure 8. Quantitative EPR data for the thermally converted products (organic free radicals) obtained at the indicated reaction times and collected without using a solvent. All reactions were conducted at 400 °C, and EPR spectra were recorded at room temperature. The average g value of the organic-free-radical peak was 2.0025 ± 0.0005.......Page 156
Figure 9. Comparison of the EPR spectra of the methylene chloride-extracted products and the straight thermally converted products reacted at 400 °C and for (left) 75 and (right) 210 min. The g value of the organic-free-radical line was found to be 2.0027 and 2.0025 at 75 and 210 min, respectively. The y axes represent the first derivative of signal intensity and are on the same scale.......Page 157
Mass Loss during Evaporation of Solvent from Thermally Converted Products......Page 158
Aromatic Content of the Straight Thermally Converted Products......Page 159
Figure 12. FTIR spectra of (a) pure CH2Cl2, (b) the solvent-free 15-min thermally converted product, and (c) the methylene chloride-extracted 15-min thermally converted product showing absorption bands in the 900–600 cm–1 region. The bonds responsible for the respective bands are indicated.......Page 161
Hydrogen Distribution in the Thermally Converted Products Extracted with No Solvent......Page 162
Figure 15. Distributions of hydrogen in the aromatics and attached to benzylic and methyl carbons in the aliphatics.......Page 163
Figure 16. 1H NMR spectra of the 60-min thermally converted products (top left) mechanically extracted without the use of solvent, (top right) extracted with methylene chloride, and (bottom left) extracted with toluene.......Page 164
n-Pentane-Insoluble Content of the Thermally Converted Products......Page 166
MCR Content......Page 167
Elemental Composition......Page 168
Figure 20. H/C ratios of the straight thermally converted products obtained at different reaction times. The value for the raw feed bitumen at room temperature corresponds to a reaction time of 0 min.......Page 169
Boiling-Point Distributions Using Simulated Distillation......Page 170
Images of the Coke Solids......Page 171
Effects of Shear Rate on Product Viscosity......Page 172
Figure 24. Variations in viscosity with shear rate for the thermally converted products obtained at 15, 30, 45, 60, and 150 min. The plot on the right represents the data for 30, 45, 60, and 150 min with viscosity on the logarithmic scale. All measurements were taken at 40 °C.......Page 173
Figure 25. Variations in viscosity with shear rate in the 1–10 s–1 range for the thermally converted products obtained at 15, 60, 120, 150, 180, and 360 min.......Page 174
Discussion......Page 175
Viscosity Ranges of Athabasca and Cold Lake Bitumens......Page 176
Variations in Viscosity with Composition......Page 178
Effects of Thermal Conversion at 400 °C on Product Properties......Page 179
Formation of Gaseous Products......Page 180
Changes in Boiling-Point Distributions......Page 181
Changes in Composition......Page 182
Changes in Asphaltene Content......Page 183
Microscopic Techniques......Page 184
Mass Spectrometry Techniques......Page 185
Effects of the Extraction Solvent on the Product Viscosity through Molecular Association......Page 187
Figure 27. Types of hydrogen bonding possible in methylene chloride-extracted products: (a) most probable scenario of the hydrogens from CH2Cl2 being involved in bonding with electronegative atoms in a naphthene aromatic compound, (b) orbital overlap in the formed hydrogen bond, and (c) collinear arrangement of the atoms participating in a possible N–H···Cl bond as explained in the main text. Reporoduced with permission from reference 26. Copyright 2009 Elsevier.......Page 190
Effects of the Extraction Solvent on the Free-Radical Spin Concentration and Its Possible Impact on Viscosity......Page 192
Figure 28. Spin concentration vs viscosity of the thermally converted samples obtained without the use of any solvent at reaction times in the range of 15–360 min.......Page 193
Influence of Shear Rate and the Impact of Viscoelasticity on Viscosity......Page 195
Figure 29. (Left) Sol and (right) gel representations of bitumen. Reproduced with permission from reference 33. Copyright 2009 Elsevier.......Page 197
Figure 30. Schematic of the effective volume of a cluster of asphaltenes with the entrapped solvent.......Page 199
Conclusions......Page 201
Appendix......Page 203
Figure A1. Calibration curve for EPR spectra with DPPH in toluene as the reference standard. The g value for DPPH averaged across all data points is 2.0033 ± 0.0002.......Page 204
Figure A3. Concentric cylinders representing the cup-and-bob arrangement in a viscometer/rheometer. The bob has radius of a and is rotating with an angular velocity of ωa, and the cup has a radius of b and is rotating with an angular velocity of ωb. In our case, ωb = 0.......Page 205
References......Page 206
Introduction......Page 216
Factors That Affect Asphaltene Stability......Page 217
Stability Testing Overview......Page 218
p Value Determination......Page 219
Figure 1. Titration curve obtained using a UV-visible spectrophotometer.......Page 220
Figure 2. FR as a function of sample concentration.......Page 221
Figure 3. Analysis of the flocculation data according to a modified Mertens procedure.......Page 222
Figure 4. Flocculation onsets obtained for a medium crude oil using different heptane flow rates. Toluene was used as a solvent.......Page 224
Figure 6. Comparison of p values obtained using different pairs of solvents to determine flocculation onsets.......Page 225
Figure 7. Comparison of experimental p values with those calculated using the blending rules in equations 19 and 20.......Page 226
Figure 8. Determination of Po for a light crude oil with low C7 asphaltene content.......Page 227
Fouling Propensity and Compatibility......Page 228
Figure 10. Comparison of the calculated and experimental fouling propensities. Data from reference 17.......Page 229
Figure 12. Effect of additive concentration on p values of a crude oil. Solvents: n-heptane and toluene. Flow rate: 0.5 mL/min.......Page 230
References......Page 231
Properties of Canadian Bitumen and Bitumen-Derived Crudes, and Their Impacts on Refinery Processing......Page 238
Introduction......Page 239
Stability of Bitumen and Bitumen-Derived Crudes......Page 240
Thermal Conversion Limits of Canadian Bitumen and Comparison with Non-Canadian Heavy Oils......Page 244
Figure 1. Determination of asphaltene precipitation onset in visbreaking of Athabasca bitumen 21.......Page 245
Fouling Characteristics of Bitumen and Dilbits—Comparison with Light and Tight Oils......Page 246
Exxon Criteria—400 °C for 3 h......Page 247
Figure 3. Fouling rods.......Page 248
Figure 4. Naphthenic acid Double Bond Equivalent 3 series carbon number distribution. RA on Y axis = Relative Abundance.......Page 249
Figure 5. Effect of temperature on TAN reduction.......Page 250
Figure 7. Proposed mechanism of H2O formation from naphthenic acids.......Page 251
Figure 8. Continuous flow iron powder test unit.......Page 252
References......Page 253
Detection and Removal of Contaminants during Petroleum Processing......Page 256
Soft X-ray Characterization of Sulfur-Poisoned Cation-Exchanged Pt/KL Catalysts for Aromatization of Hexane......Page 258
Introduction......Page 259
Transmission Electron Microscopy Analysis......Page 261
Results and Discussion......Page 262
Figure 1. PSD distribution for KL and ion-exchange zeolites (top) and Pt-promoted catalysts (bottom).......Page 263
Figure 2. XANES spectra at the potassium K-edge of (dashed lines) clean and (solid) H2S-poisoned Pt/M-exchanged/KL catalysts, where M = (a, b) K, (c, d) Ca, (e, f) Sc, and (g, h) Mn.......Page 266
Figure 3. XANES spectra at the calcium K-edge of (a) clean and (b) H2S-poisoned Pt/Ca-exchanged/KL catalysts.......Page 267
Figure 4. XANES spectra at the scandium K-edge of (a) clean and (b) H2S poisoned Pt/Sc-exchanged/KL catalysts.......Page 268
Figure 5. XANES spectra at the manganese K-edge of (a) clean and (b) H2S-poisoned Pt/Mn-exchanged/KL catalysts.......Page 269
Figure 6. XANES spectra at the sulfur K-edge of H2S-poisoned Pt/M-exchanged/KL catalysts, where M = (a) K, (b) Ca, (c) Sc, and (d) Mn.......Page 270
Figure 8. Proposed mechanism for enhanced sintering. Once S binds to surface Pt atoms, the Pt particles become mobile on the surface, resulting in enhanced sintering.......Page 271
Figure 9. (Top) hexane conversion and (bottom) benzene selectivity versus time on stream (T.o.S.) for the clean (open symbols) and H2S-poisoning run (solid symbols). Process conditions: T = 500 °C, P = 1 atm, weight-hourly space velocity = 2.5 h−1, H2/C6H14 = 6.......Page 272
References......Page 273
Nitrogen Speciation: Application to Reactivity of Feeds to Hydroprocessing and Catalyst Deactivation......Page 276
Figure 1. Examples of nonbasic (top row) and basic (bottom row) nitrogen-containing compounds.......Page 277
2.1 Material and Methods......Page 278
Figure 3. Reactivity to hydroprocessing as HDN rate constant (in h-1) vs. weight percentage of asphaltenes in the feeds.......Page 279
Figure 5. Percentage of nitrogen present on the surface (as measured by XPS) versus the percentage of nitrogen in the bulk (as measured by elemental analysis) for the asphaltenes.......Page 281
Figure 6. Reactivity to hydroprocessing as HDN rate constant (in h-1) versus the percentage of pyrrolic nitrogen in the asphaltenes as determined by XPS.......Page 282
2.3 MS of Asphaltenes......Page 283
Figure 9. Comparison of the mass spectrum of N1 hydrocarbons in APPI-positive ion mode and the reactivity to hydroprocessing as HDN rate constant (in h-1) for the Mexican VR asphaltenes.......Page 284
3 Deep Solvent Extraction of Spent Hydrocracking Catalyst......Page 285
3.1 Experimental Part......Page 286
Figure 10. Analytical procedure used for the solvent extraction of the spent hydrocracking catalyst.......Page 287
Figure 11. Asphaltene solubility profile 15 of the solvent-extracted organic fractions.......Page 288
Figure 12. ESI+ mass spectra in positive ion mode for the hydrocracking feed and the solvent-extracted organic fractions.......Page 289
Figure 14. DBE by ESI+ MS versus the carbon number of the N1 class of compounds for the hydrocracking feed and the solvent-extracted organic fractions.......Page 290
Figure 15. DBE by APPI+ MS versus the carbon number of the N1 class of compounds of the solvent-extracted organic fractions.......Page 291
3.3 Mechanistic Considerations......Page 292
References......Page 293
Total Chloride Analysis in Petroleum Crude Samples: Challenges and Opportunities......Page 296
1 Introduction......Page 297
2.2.1 CIC......Page 298
Figure 1. CIC setup.......Page 299
2.2.2 ICP-MS......Page 300
2.2.4 INNA......Page 301
Calibration:......Page 302
Figure 4. Continuous flow device used for sample introduction on Chlora 2XP MWDXRF: (a) whole setup, (b) Accu-Cell insert with Accu-Cell and connection tubing, (c) peristaltic pump for sample transportation.......Page 303
3.1 Total Chloride Analysis in Crude......Page 304
Figure 5. Schematic diagram of CIC. Reproduced with permission from Metrohm.......Page 305
Figure 6. Chloride calibration in mineral oil for CIC (current instrument output).......Page 306
Figure 8. CIC chromatogram (magnified) for a low-level chloride crude in the presence of high sulfur background.......Page 308
3.3 Total Chloride Analysis in Petroleum Crude and Fractions by Direct Dilution Using ICP-MS......Page 309
3.4 Total Chloride Analysis in Petroleum Crude and MWDXRF......Page 314
Figure 9. Chloride in crude oil analysis on MWDXRF Chlora. Option 1: static mode; Option 2: stir with a magnetic bar; Option 3: high-energy mechanical mixing.......Page 316
Figure 10. Chloride and sulfur calibration in mineral oil on MWDXRF Chlora X2P. (a) Chloride; (b) sulfur.......Page 317
Figure 11. Sulfur automatic correction during chloride measurement on MWDXRF Chlora X2P.......Page 318
Figure 12. Chloride determination in crudes: comparison among techniques.......Page 320
Figure 13. Chloride determination on S1 sample by CIC: (a) S1 initial; (b) sample points analyzed by CIC.......Page 321
4 Conclusions......Page 322
References......Page 323
Characterization of Nonmetal Chloride Salts and Their Removal from Crude Oil......Page 326
2.1 Crude Oil Samples......Page 327
2.2.1 Extraction Procedure......Page 328
2.3 Chloride Uptake Experiment by Reaction of Crude Oil and HCl......Page 329
3.1 Precision of Chloride Extraction Procedure......Page 330
Figure 1. Extracted and unextracted chloride: the amount of unextracted chloride is generally small but can be significantly high for some crudes or certain batches of these crudes.......Page 331
Figure 2. Change of chloride concentration in NAf1 crude with water extraction, showing a significant amount of chloride remaining in the oil after multiple extractions.......Page 332
3.2.2 Effect of Additive on Chloride Extraction Efficiency......Page 334
Figure 4. Relationship of chloride extraction efficiency and DBSA concentration, showing that efficiency is proportional to acid concentration.......Page 335
3.3 Chloride Uptake Due to Reaction of Crude Oil and Hydrochloric Acid......Page 336
4 Conclusions......Page 339
References......Page 340
1 Introduction......Page 342
2.2 Sample Treatment......Page 343
Figure 1. Optical microscopy of Fe-poisoned Ecat-1.......Page 344
3.2 Elemental Distribution on Fe-Poisoned Ecats......Page 345
Figure 4. Relationship of Si/Al mass ratio with iron content on different surfaces of FCC Ecat particles (S-i-j, S = surface, i = Ecat number, j = surface number).......Page 346
Figure 5. EPMA mapping of Mg and Fe of sample after treatment (brighter color indicates higher content of the element).......Page 347
3.3.2 Iron Transfer of Ecats in Fixed Bed......Page 348
3.3.3 Iron Transfer of Contaminated Fresh Catalyst......Page 349
References......Page 350
Jeramie Adams......Page 352
Indexes......Page 354
Author Index......Page 356
B......Page 358
C......Page 359
I......Page 360
N......Page 361
P......Page 362
S......Page 363




نظرات کاربران