دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 1 نویسندگان: Tahir Iqbal Awan, Almas Bashir, Aqsa Tehseen سری: ISBN (شابک) : 0128189088, 9780128189085 ناشر: Elsevier سال نشر: 2020 تعداد صفحات: 326 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 19 مگابایت
در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد
در صورت تبدیل فایل کتاب Chemistry of Nanomaterials: Fundamentals and Applications به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب شیمی نانومواد: مبانی و کاربردها نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
شیمی نانومواد: مبانی و کاربردها مقدمه ای اساسی برای این شیمی ارائه می دهد. این کتاب با مقدمهای بر حوزه علم و فناوری نانو آغاز میشود، و به تشریح طیف وسیعی از اثرات، تعاملات و ویژگیهای مهم میپردازد. ابزارهای مورد استفاده برای ارزیابی چنین ویژگیهایی مورد بحث قرار میگیرند، سپس فصلهایی که این دانش بنیادی را با ارائه مثالهایی از نانومواد و کاربردهای آنها در دنیای واقعی در زمینه قرار میدهند، مورد بحث قرار میگیرند. این کتاب با تکیه بر تجربه نویسندگان خبره خود، مقدمه ای در دسترس برای تعاملات موجود در نانومواد برای دانشجویان سطح بالا و محققین است.
Chemistry of Nanomaterials: Fundamentals and Applications provides a foundational introduction to this chemistry. Beginning with an introduction to the field of nanoscience and technology, the book goes on to outline a whole range of important effects, interactions and properties. Tools used to assess such properties are discussed, followed by chapters putting this fundamental knowledge in context by providing examples of nanomaterials and their applications in the real world. Drawing on the experience of its expert authors, this book is an accessible introduction to the interactions at play in nanomaterials for both upper-level students and researchers.
Cover Chemistry of Nanomaterials: Fundamentals and Applications Copyright Contents List of Contributors Preface Part 1: Introduction to nanomaterials 1 Introduction 1.1 What is nanoscience and nanotechnology? 1.1.1 Nanoworld 1.1.2 Nanoscience 1.1.2.1 Nanoscience in nature 1.1.3 Nanotechnology 1.1.3.1 From nanoscience to nanotechnologies 1.2 History of nanotechnology 1.2.1 Feynman talks on small structures 1.2.2 Emergence of nanotechnology 1.2.2.1 First generation (beginning ∼2000) 1.2.2.2 Second generation (beginning ∼2005) 1.2.2.3 Third generation (beginning ∼2010) 1.2.2.4 Fourth generation (beginning ∼2015–20) 1.3 Nanometer scale 1.3.1 Special at nanoscale 1.3.1.1 Quantum effects 1.3.1.2 Surface area-to-volume ratio 1.4 Nanoparticles 1.4.1 Types of nanoparticles 1.4.1.1 Natural nanoparticles 1.4.1.2 Anthropogenic nanoparticles 1.5 Nanomaterials 1.5.1 What are nanoparticles, nanotubes, and nanoplates? 1.5.2 Classification of nanomaterials 1.5.2.1 Zero-dimensional nanomaterials 1.5.2.2 One-dimensional nanomaterials 1.5.2.3 Two-dimensional (2D) nanomaterials 1.5.2.4 Three-dimensional nanomaterial 1.6 Applications and challenges in nanotechnologies 1.6.1 Applications 1.6.1.1 Nanotechnology in electronics 1.6.1.2 Nanotechnology in the production of energy 1.6.1.3 Nanotechnology in automobile industries 1.6.1.4 Nanotechnology in cosmetics 1.6.1.5 Nanotechnology in space technology 1.6.1.6 Nanotechnology in medicine 1.6.1.7 Nanotechnology in the textile industry 1.6.1.8 Nanotechnology in home appliances 1.6.1.9 Nanotechnology in the food industry 1.6.1.10 Nanotechnology in sports equipment 1.6.2 Challenges in nanotechnology References 2 Quantum effects 2.1 Wave–particle duality 2.2 Electromagnetic waves 2.3 Energy quanta 2.4 The de Broglie hypothesis 2.4.1 Derivation 2.4.2 Implications of de Broglie hypothesis 2.5 Evidence for the wave nature of electrons 2.5.1 Davisson–Germer experiment 2.5.2 G. P. Thomson’s experiment 2.6 Heisenberg’s uncertainty principle 2.7 Quantum dots 2.8 Moore’s law 2.8.1 Moore’s second law 2.8.2 Ultimate limits of the law 2.9 Quantum tunneling 2.9.1 Tunneling through a single potential barrier 2.9.2 Applications 2.10 Exercise References Further reading 3 Interfaces and surfaces 3.1 Introduction 3.2 Surface physics and chemistry 3.3 Surface and interface 3.4 Surface modification 3.4.1 Methods of surface modification 3.4.1.1 Surface scratching/roughening 3.4.1.2 Surface patterning 3.4.1.3 Chemical surface modification 3.4.1.4 Thin films and surface coatings 3.4.1.5 Pharmaceutical attachment to surfaces 3.4.1.6 Drug delivery assistance by porous surface 3.5 Thin-film deposition 3.5.1 Deposition techniques 3.5.1.1 Physical vapor deposition 3.5.1.1.1 Vacuum deposition Thermal evaporation Electron beam evaporation 3.5.1.1.2 Cladding Laser cladding Explosion cladding 3.5.1.1.3 Sputtering Magnetron sputtering 3.5.1.1.4 Arc welding 3.5.1.1.5 Thermal spraying 3.5.1.2 Chemical vapor deposition 3.5.1.2.1 Atmospheric pressure chemical vapor deposition 3.5.1.2.2 Low-pressure chemical vapor deposition 3.5.1.2.3 Metal organic chemical vapor deposition 3.5.1.2.4 Plasma-enhanced chemical vapor deposition 3.5.1.2.5 Atomic layer deposition 3.5.1.2.6 Electroplating 3.6 Self-assembly 3.6.1 Molecular self-assembly systems 3.6.2 Idea of molecular self-assembly 3.6.3 Equilibrium and nonequilibrium self-assembly References 4 Properties of nanomaterials 4.1 Background history of subatomic particles 4.2 Subatomic physics to chemical systems 4.2.1 Types of chemical bonds 4.2.1.1 Ionic bonds 4.2.1.2 Covalent bonding 4.2.1.3 Metallic bonds 4.2.1.4 Van der Waals interactions 4.3 Properties of nanomaterials 4.3.1 Electrical properties 4.3.2 Mechanical properties 4.3.2.1 Hardness 4.3.2.2 Elastic modulus 4.3.3 Thermal properties 4.3.3.1 Heat capacity 4.3.3.2 Melting point 4.3.3.3 Coefficient of thermal expansion 4.3.4 Magnetic properties 4.3.5 Optical properties References Further reading 5 Tools and instrumentation 5.1 Microscopy 5.1.1 Brief history 5.1.2 Concept of microscopy 5.1.3 Optical microscopy 5.1.3.1 Simple microscope 5.1.3.1.1 Magnification of simple microscope 5.1.3.2 Compound microscope 5.1.3.2.1 Magnification of compound microscope 5.1.3.3 Limitations 5.1.3.4 Advantages and disadvantages 5.1.4 Various optical microscopic techniques 5.1.4.1 Bright-field microscopy 5.1.4.2 Dark-field microscopy 5.1.4.3 Phase contrast microscopy 5.1.4.4 Differential interference contrast microscopy 5.2 Electron microscopy 5.2.1 Electron interaction with material sample 5.2.2 Working of electron microscopy 5.3 Types of electron microscopy 5.3.1 Scanning electron microscope 5.3.1.1 Working of scanning electron microscope 5.3.1.2 Advantages of scanning electron microscope 5.3.1.3 Disadvantages of scanning electron microscope 5.3.1.4 Limitations 5.3.2 Transmission electron microscope 5.3.2.1 Working of transmission electron microscope 5.3.2.2 Advantages of transmission electron microscope 5.3.2.3 Disadvantages of transmission electron microscopes 5.3.2.4 Applications of transmission electron microscope 5.3.3 Dissimilarities between scanning electron microscope and transmission electron microscope 5.4 Scanning tunneling microscope 5.4.1 Components and workings 5.4.1.1 Various features of scanning tunneling microscope 5.5 Atomic force microscopy 5.5.1 Construction of atomic force microscope 5.5.1.1 Laser 5.5.1.2 Cantilever 5.5.1.3 Scanner 5.5.1.4 Photodetector 5.5.1.5 Feedback electronics 5.5.1.6 Sample 5.5.2 Working principle of atomic force microscope 5.5.3 Modes of operation 5.5.3.1 Contact/repulsive mode 5.5.3.2 Noncontact/attractive mode 5.5.3.3 Tapping/intermittent mode 5.5.4 Advantages and disadvantages 5.5.5 Applications 5.6 Fluorescence method 5.7 Synchrotron radiation 5.8 Atom probe instrument 5.8.1 Construction 5.8.2 Working of atom probe field ion microscopy 5.8.3 Mathematical analysis 5.8.4 Limitations of atom probe 5.8.5 Comparison with tunneling electron microscope and SIMS References 6 Fabricating nanostructures 6.1 Introduction 6.2 Lithography 6.2.1 Photolithography 6.2.1.1 Steps of photolithography 6.2.1.1.1 Surface preparation 6.2.1.1.2 Oxidation Types of photoresist 6.2.1.1.3 Masking 6.2.1.1.4 Exposing to UV light Contact printing Proximity printing Projection printing 6.2.1.1.5 Etching 6.2.2 Electron beam lithography 6.2.2.1 Procedure 6.2.2.1.1 Coating by resist 6.2.2.1.2 Deposition of metallic layer 6.2.2.1.3 Aggressive solvent mixture 6.3 Molecular beam epitaxy 6.3.1 Molecular beam epitaxy process 6.3.1.1 Epitaxial growth of crystalline layers on substrate 6.3.1.2 Epitaxy types 6.3.1.2.1 Homoepitaxy 6.3.1.2.2 Heteroepitaxy 6.3.2 Working principle 6.3.3 Molecular beam epitaxy layout 6.3.4 Features of molecular beam epitaxy 6.3.5 Advantages and disadvantages of molecular beam epitaxy 6.3.6 In situ growth monitoring techniques 6.4 Self-assembled masks 6.4.1 Distinctive features 6.4.2 Order 6.4.3 Interactions 6.4.4 Building blocks 6.4.5 Examples 6.4.6 Properties 6.4.7 Self-assembly at the macroscopic scale 6.5 Focused ion beam 6.5.1 The construction of focused ion beam 6.5.1.1 The vacuum system 6.5.1.2 The liquid metal ion source 6.5.1.3 The ion column 6.5.1.4 The sample stage 6.5.1.5 The imaging detectors 6.5.1.6 Gas source usage or deposition 6.5.1.7 Dual platform 6.5.2 Principle 6.5.3 Applications of FIB 6.6 Stamp technology stamping 6.6.1 Operations 6.6.2 Stamping lubricant 6.6.3 Industrial applications References Part 2: Interactions in nanomaterials 7 Electrons in nanostructures 7.1 Introduction to electrons 7.1.1 Importance of electrons in bonding 7.2 Emission of electrons 7.2.1 Thermionic emission 7.2.1.1 Dependence of thermionic emission 7.2.2 Field emission 7.2.3 Photoelectric emission 7.2.4 Secondary electron emission 7.3 Variations in electronic properties of materials 7.3.1 Electrical properties 7.3.2 Optical properties 7.4 Electrons in nanostructures 7.4.1 Quantum effects of electrons in nanostructures 7.5 Free electron model 7.6 Bloch’s theorem 7.6.1 Implications of Bloch’s theorem 7.7 Band structure 7.7.1 Energetic bands 7.7.2 Band gaps 7.8 Single electron transistor 7.8.1 Operation of single electron transistor 7.8.2 Applications 7.8.2.1 Supersensitive electrometer 7.8.2.2 Single electron spectroscopy 7.8.2.3 Detection of infrared radiation 7.8.2.4 Charge state logics 7.8.2.5 Programmable single electron transistor logic 7.9 Resonant tunneling References 8 Molecular electronics 8.1 Molecular electronics 8.2 Lewis structures 8.2.1 Limitations 8.3 Variational approach to calculate molecular orbitals 8.4 Hybridization of atomic orbitals 8.5 Donor acceptor properties 8.6 Electron transfer between molecules 8.7 Charge transport in weakly interacting molecular solids 8.8 Single molecule electronics 8.8.1 Theoretical background 8.8.2 Examples References 9 Nanomaterials 9.1 Introduction of nanomaterials 9.1.1 Dimensionality 9.1.1.1 Zero-dimensional nanomaterials 9.1.1.2 One-dimensional nanomaterials 9.1.1.3 Two-dimensional nanomaterials 9.1.1.4 Three-dimensional nanomaterials 9.2 Quantum dots 9.2.1 Applications 9.2.1.1 Optical applications 9.2.1.2 Quantum computing 9.2.1.3 Biological applications 9.3 Nanowires 9.3.1 Synthesis 9.3.2 Properties of nanowires 9.3.2.1 Magnetic properties 9.3.2.2 Thermoelectric properties 9.3.2.3 Electron transport properties 9.3.2.4 Optical properties 9.3.3 Applications of nanowires 9.4 Nanophotonics 9.4.1 Optoelectronics and microelectronics 9.4.2 Basic principles 9.5 Magnetic nanostructures 9.5.1 Synthesis 9.5.2 Properties of magnetic nanostructures 9.5.3 Applications of magnetic nanostructures 9.6 Nano thermal devices 9.7 Nanofluidic devices 9.8 Biomimetic materials References Part 3: Applications of nanomaterials 10 Nanobiotechnology 10.1 Introduction to Nanobiotechnology 10.2 DNA microarrays 10.2.1 Principle 10.2.2 Applications 10.3 DNA assembly of nanoparticles 10.3.1 Uses 10.4 Protein and DNA assembly 10.4.1 Protein assembly 10.4.2 DNA assembly 10.5 Digital cells 10.6 Genetic circuits 10.7 DNA computing References 11 Nanotechnology: the road ahead 11.1 Nanostructures 11.1.1 Nanoscaled biomolecules 11.2 Structure of carbon nanotubes 11.3 Quantum dots (QDs) 11.3.1 Properties of quantum dots 11.3.2 Fabrication of quantum dots 11.4 Energy harvesting and storage 11.4.1 Piezoelectric nanogenerators 11.4.2 Solar cells 11.4.3 Electrochemical energy storage 11.4.3.1 Rechargeable batteries 11.4.3.2 Supercapacitors 11.4.3.3 Fuel cell 11.5 Quantum informatics 11.5.1 Nanostructures in quantum informatics 11.5.1.1 Semiconductor nanostructures in quantum computation 11.5.1.2 Nanostructures for quantum information processing References Glossary Index Back Cover