ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Chemical Reaction Engineering

دانلود کتاب مهندسی واکنش شیمیایی

Chemical Reaction Engineering

مشخصات کتاب

Chemical Reaction Engineering

ویرایش: [2 ed.] 
نویسندگان:   
سری:  
ISBN (شابک) : 0367494469, 9780367494469 
ناشر: CRC Press 
سال نشر: 2021 
تعداد صفحات: 752
[772] 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 14 Mb 

قیمت کتاب (تومان) : 30,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 3


در صورت تبدیل فایل کتاب Chemical Reaction Engineering به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب مهندسی واکنش شیمیایی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب مهندسی واکنش شیمیایی

این کتاب (نسخه اول انگلیسی 2014) یک هدف اصلی دارد: آموزش مفاهیم اولیه سینتیک و طراحی راکتور به دانشجویان (زیر) فارغ التحصیلان. این کتاب درسی برای دانشجویان (زیر) فارغ التحصیل مهندسی شیمی و همچنین برای دانشجویان فارغ التحصیل و محققین سینتیک و کاتالیز ارزش زیادی خواهد داشت.


توضیحاتی درمورد کتاب به خارجی

This book (first English edition 2014) has one major objective: teach (under)graduate students the basic concepts of kinetics and reactor design. This textbook will be of great value to (under)graduate students in chemical engineering as well as to graduate students in and researchers of kinetics and catalysis.



فهرست مطالب

Cover
Title Page
Copyright Page
Table of contents
Preface
Nomenclature
About the authors
Part I. Basic notions
	1 Definitions and stoichiometry
		1.1 Measurement variables
		1.2 Calculation of measurement variables
			1.2.1 Extent of the reaction
			1.2.2 Conversion
		1.3 Continuous systems
		1.4 Partial pressures
		1.5 Method of total pressure
		1.6 General properties
		1.7 Solved problems
		1.8 Accuracy and precision
		1.9 Measurement errors and precision
	2 Chemical equilibrium
	3 Kinetics of reactions
		3.1 Reaction rates—definitions
		3.2 Reaction rate
			3.2.1 Kinetic equations
		3.3 Influence of the temperature on the reaction rate
			3.3.1 Reversible reactions
			3.3.2 Interpretation remarks
			3.3.3 Reparameterization of the Arrhenius equation
	4 Molar balance in open and closed systems with chemical reaction
		4.1 Batch
		4.2 Continuous stirring tank reactor
		4.3 Continuous tubular reactor
Part II. Kinetics
	5 Determination of kinetic parameters
		5.1 Irreversible reaction at constant volume
			5.1.1 Kinetic model of first order
			5.1.2 Kinetic model of second order (global)
		5.2 Irreversible reactions at variable volume
			5.2.1 Irreversible of first order
			5.2.2 Irreversible reactions of second order
		5.3 Irreversible reactions of order n–Half-life method
		5.4 Reversible reactions at constant volume
			5.4.1 Direct and reverse first-order elementary reaction
			5.4.2 Direct and reverse second-order elementary reaction
		5.5 Determination of the kinetic parameters by the differential method
			5.5.1 Differential reactor
		5.6 Uncertainties of kinetic parameters
		5.7 Reparameterization of power-law rate equations
	6 Kinetics of multiple reactions
		6.1 Simple reactions in series
		6.2 Simple parallel reactions
		6.3 Continuous systems
		6.4 Kinetics of complex reactions
			6.4.1 Decomposition reactions
			6.4.2 Parallel reactions
			6.4.3 Series–parallel reactions
	7 Non-elementary reactions
		7.1 Classical kinetic model
		7.2 Chain reactions
		7.3 Theory of the transition state
		7.4 Reactions of thermal cracking
	8 Polymerization reactions
		8.1 Fundamental aspects of step polymerizations
			8.1.1 The most probable Schulz-Flory distribution
		8.2 Fundamental aspects of chain polymerizations
			8.2.1 Initiation
			8.2.2 Propagation
			8.2.3 Termination
			8.2.4 Chain transfer
			8.2.5 Quasi-steady state balances
		8.3 Diffusive limitations
		8.4 Depolymerization
		8.5 Concluding remarks
	9 Kinetics of liquid-phase reactions
		9.1 Enzymatic reactions
			9.1.1 Kinetic model
				9.1.2 Determination of the kinetic parameters
				9.1.3 Effect of external inhibitors
				9.1.4 Kinetics of biological fermentation
				9.1.5 Mass balance
		9.2 Liquid-phase reactions
			9.2.1 Liquid solutions
				9.2.2 Acid—base reactions
		9.3 Reparameterization of the Michaelis-Menten equation
	10 Heterogeneous reaction kinetics
		10.1 External phenomena
			10.2 Internal diffusion phenomena
			10.3 Adsorption–desorption phenomena
				10.3.1 Physical adsorption or physisorption
					10.3.2 Chemical adsorption or chemisorption
					10.3.3 Comparing physical and chemical adsorptions
			10.4 Adsorption isotherms
			10.5 Adsorption models
				10.5.1 Langmuir model
					10.5.2 Other chemisorption models
			10.6 Model of heterogeneous reactions
				10.6.1 Langmuir–Hinshelwood–Hougen–Watson-model (LHHW)
					10.6.2 Eley–Rideal model
					10.6.3 Effect of the temperature and energies
			10.7 Determination of the constants
			10.8 Noncatalytic heterogeneous reactions
			10.9 Reparameterization of the LHHW equation
Part III. Parameter estimation and experimental design
	11 Determination of kinetic parameters through parameter estimation
		11.1 Definition of the parameter estimation problem
			11.2 The objective function
			11.3 Error propagation and parameterization of the estimation problem
			11.4 Numerical minimization of the objective function
			11.5 Statistical characterization of model adequacy
			11.6 The confidence region of parameter estimates
			11.7 Uncertainties of model predictions
			11.8 Parameterization of the arrhenius equation
			11.9 Concluding remarks
	12 Experimental design
		12.1 Factorial experimental design
		12.2 Optimal experimental design for parameter estimation
		12.3 Sequential experimental designs
			12.3.1 Sequential experimental design for model discrimination
			12.3.2 Sequential experimental design for parameter estimation
		12.4 Concluding remarks
	13 Kinetic exercises
		13.1 Solution of kinetic exercises
		13.2 Proposed exercises
Part IV. Reactors
	14 Ideal reactors
		14.1 Types of reactors
		14.2 Definitions and concepts of residence time
		14.3 Ideal reactors
			14.3.1 Batch reactor
			14.3.2 Continuous tank reactor
			14.3.3 Continuous tubular reactor (PFR)
		14.4 Ideal nonisothermal reactors
			14.4.1 Adiabatic continuous reactor
			14.4.2 Nonadiabatic batch reactor
			14.4.3 Adiabatic batch reactor
			14.4.4 Analysis of the thermal effects
	15 Specific reactors
		15.1 Semibatch reactor
		15.2 Reactor with recycle
		15.3 Pseudo-homogeneous fixed-bed reactor
		15.4 Membrane reactors
	16 Comparison of reactors
		16.1 Comparison of volumes
			16.1.1 Irreversible first-order reaction at constant volume
			16.1.2 Irreversible second-order reaction at constant volume
			16.1.3 Reactions at variable volume
		16.2 Productivity
		16.3 Yield/Selectivity
		16.4 Overall yield
			16.4.1 Effect of reaction order
				16.4.2 Effects of kinetic constants
				16.4.3 Presence of two reactants
			16.5 Reactions in series
		17 Combination of reactors
			17.1 Reactors in series
				17.1.1 Calculating the number of reactors in series to an irreversible first-order reaction
				17.1.2 Calculating the number of reactors in series for an irreversible second-order reaction
				17.1.3 Graphical solution
			17.2 Reactors in parallel
			17.3 Production rate in reactors in series
			17.4 YIELD and selectivity in reactors in series
		18 Transport phenomena in heterogeneous systems
			18.1 Intraparticle diffusion limitation—pores
			18.2 Effectiveness factor
			18.3 Effects of intraparticle diffusion on the experimental parameters
			18.4 External mass transfer and intraparticle diffusion limitations
Part V. Deactivation
	19 Catalyst deactivation
		19.1 Kinetics of deactivation
		19.2 Deactivation in pfr or cstr reactor
		19.3 Forced deactivation
		19.4 Catalyst regeneration
			19.4.1 Differential scanning calorimetry
			19.4.2 Temperature programmed oxidation
			19.4.3 Catalytic evaluation
		19.5 Kinetic study of regeneration
			19.5.1 Balance with respect to solid (carbon)
			19.5.2 Particular case
	20 Exercises reactors and heterogeneous reactors
		20.1 Solutions to exercises: Reactors
		20.2 Exercises proposed: Reactors
	21 Multiphase reacting systems
	22 Heterogeneous reactors
		22.1 Fixed bed reactor
			22.1.1 Reactors in series
		22.2 Fluidized bed reactor
	23 Nonideal reactors
		23.1 Introduction
		23.2 Residence time distribution
			23.2.1 Ideal cases
			23.2.2 Variance
		23.3 Nonideal compartmental reactor models
Part VI. Catalysis
	24 Catalysis: Analyzing variables influencing the catalytic properties
		24.1 Introduction
		24.2 Selection of catalysts
		24.3 Activity patterns
			24.3.1 Model reactions
			24.3.2 Cyclohexane dehydrogenation
			24.3.3 Benzene hydrogenation
		24.4 Conventional preparation methods of catalysts
			24.4.1 Precipitation/coprecipitation methods
			24.4.2 Impregnation of metals on supports
			24.4.3 Ion exchange
		24.5 Analyses of variables influencing final properties of catalysts
			24.5.1 Influence of pH
			24.5.2 Autoclaving
			24.5.3 Influence of time, concentration, and impregnation cycles
		24.6 Thermal treatments
			24.6.1 Drying
			24.6.2 Calcination
		24.7 Effect of reduction temperature on interaction and sintering
		24.8 Influence of the support and metal concentration over the reduc-tion
		24.9 Influence of the heating rate
		24.10 Influence of vapor
		24.11 Effect of temperature and reaction time
		24.12 Strong metal support interaction
		24.13 Experimental design—influence of parameters on the catalytic performance
		24.14 Conclusion
Part VII. Practices
	25 Experimental practices
		25.1 Reactions in homogeneous phase
			25.1.1 Free radical polymerization of styrene
			25.1.2 Polymerization of isobutylene
		25.2 Reactions in heterogeneous phase
			25.2.1 Experimental system
			25.2.2 Determination of activation energy: dehydrogenation of cyclohexane
			25.2.3 Kinetic study—methane reforming withCO2—heterogeneous reaction
		25.3 Performance of reactors
			25.3.1 Batch reactor–hydrogenation of sucrose
			25.3.2 Integral continuous flow reactor (tubular)—isomerization of xylenes
			25.3.3 Goals
References
Subject index




نظرات کاربران