دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: [2 ed.]
نویسندگان: Martin Schmal (editor). José Carlos Pinto (editor)
سری:
ISBN (شابک) : 0367494469, 9780367494469
ناشر: CRC Press
سال نشر: 2021
تعداد صفحات: 752
[772]
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 14 Mb
در صورت تبدیل فایل کتاب Chemical Reaction Engineering به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب مهندسی واکنش شیمیایی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این کتاب (نسخه اول انگلیسی 2014) یک هدف اصلی دارد: آموزش مفاهیم اولیه سینتیک و طراحی راکتور به دانشجویان (زیر) فارغ التحصیلان. این کتاب درسی برای دانشجویان (زیر) فارغ التحصیل مهندسی شیمی و همچنین برای دانشجویان فارغ التحصیل و محققین سینتیک و کاتالیز ارزش زیادی خواهد داشت.
This book (first English edition 2014) has one major objective: teach (under)graduate students the basic concepts of kinetics and reactor design. This textbook will be of great value to (under)graduate students in chemical engineering as well as to graduate students in and researchers of kinetics and catalysis.
Cover Title Page Copyright Page Table of contents Preface Nomenclature About the authors Part I. Basic notions 1 Definitions and stoichiometry 1.1 Measurement variables 1.2 Calculation of measurement variables 1.2.1 Extent of the reaction 1.2.2 Conversion 1.3 Continuous systems 1.4 Partial pressures 1.5 Method of total pressure 1.6 General properties 1.7 Solved problems 1.8 Accuracy and precision 1.9 Measurement errors and precision 2 Chemical equilibrium 3 Kinetics of reactions 3.1 Reaction rates—definitions 3.2 Reaction rate 3.2.1 Kinetic equations 3.3 Influence of the temperature on the reaction rate 3.3.1 Reversible reactions 3.3.2 Interpretation remarks 3.3.3 Reparameterization of the Arrhenius equation 4 Molar balance in open and closed systems with chemical reaction 4.1 Batch 4.2 Continuous stirring tank reactor 4.3 Continuous tubular reactor Part II. Kinetics 5 Determination of kinetic parameters 5.1 Irreversible reaction at constant volume 5.1.1 Kinetic model of first order 5.1.2 Kinetic model of second order (global) 5.2 Irreversible reactions at variable volume 5.2.1 Irreversible of first order 5.2.2 Irreversible reactions of second order 5.3 Irreversible reactions of order n–Half-life method 5.4 Reversible reactions at constant volume 5.4.1 Direct and reverse first-order elementary reaction 5.4.2 Direct and reverse second-order elementary reaction 5.5 Determination of the kinetic parameters by the differential method 5.5.1 Differential reactor 5.6 Uncertainties of kinetic parameters 5.7 Reparameterization of power-law rate equations 6 Kinetics of multiple reactions 6.1 Simple reactions in series 6.2 Simple parallel reactions 6.3 Continuous systems 6.4 Kinetics of complex reactions 6.4.1 Decomposition reactions 6.4.2 Parallel reactions 6.4.3 Series–parallel reactions 7 Non-elementary reactions 7.1 Classical kinetic model 7.2 Chain reactions 7.3 Theory of the transition state 7.4 Reactions of thermal cracking 8 Polymerization reactions 8.1 Fundamental aspects of step polymerizations 8.1.1 The most probable Schulz-Flory distribution 8.2 Fundamental aspects of chain polymerizations 8.2.1 Initiation 8.2.2 Propagation 8.2.3 Termination 8.2.4 Chain transfer 8.2.5 Quasi-steady state balances 8.3 Diffusive limitations 8.4 Depolymerization 8.5 Concluding remarks 9 Kinetics of liquid-phase reactions 9.1 Enzymatic reactions 9.1.1 Kinetic model 9.1.2 Determination of the kinetic parameters 9.1.3 Effect of external inhibitors 9.1.4 Kinetics of biological fermentation 9.1.5 Mass balance 9.2 Liquid-phase reactions 9.2.1 Liquid solutions 9.2.2 Acid—base reactions 9.3 Reparameterization of the Michaelis-Menten equation 10 Heterogeneous reaction kinetics 10.1 External phenomena 10.2 Internal diffusion phenomena 10.3 Adsorption–desorption phenomena 10.3.1 Physical adsorption or physisorption 10.3.2 Chemical adsorption or chemisorption 10.3.3 Comparing physical and chemical adsorptions 10.4 Adsorption isotherms 10.5 Adsorption models 10.5.1 Langmuir model 10.5.2 Other chemisorption models 10.6 Model of heterogeneous reactions 10.6.1 Langmuir–Hinshelwood–Hougen–Watson-model (LHHW) 10.6.2 Eley–Rideal model 10.6.3 Effect of the temperature and energies 10.7 Determination of the constants 10.8 Noncatalytic heterogeneous reactions 10.9 Reparameterization of the LHHW equation Part III. Parameter estimation and experimental design 11 Determination of kinetic parameters through parameter estimation 11.1 Definition of the parameter estimation problem 11.2 The objective function 11.3 Error propagation and parameterization of the estimation problem 11.4 Numerical minimization of the objective function 11.5 Statistical characterization of model adequacy 11.6 The confidence region of parameter estimates 11.7 Uncertainties of model predictions 11.8 Parameterization of the arrhenius equation 11.9 Concluding remarks 12 Experimental design 12.1 Factorial experimental design 12.2 Optimal experimental design for parameter estimation 12.3 Sequential experimental designs 12.3.1 Sequential experimental design for model discrimination 12.3.2 Sequential experimental design for parameter estimation 12.4 Concluding remarks 13 Kinetic exercises 13.1 Solution of kinetic exercises 13.2 Proposed exercises Part IV. Reactors 14 Ideal reactors 14.1 Types of reactors 14.2 Definitions and concepts of residence time 14.3 Ideal reactors 14.3.1 Batch reactor 14.3.2 Continuous tank reactor 14.3.3 Continuous tubular reactor (PFR) 14.4 Ideal nonisothermal reactors 14.4.1 Adiabatic continuous reactor 14.4.2 Nonadiabatic batch reactor 14.4.3 Adiabatic batch reactor 14.4.4 Analysis of the thermal effects 15 Specific reactors 15.1 Semibatch reactor 15.2 Reactor with recycle 15.3 Pseudo-homogeneous fixed-bed reactor 15.4 Membrane reactors 16 Comparison of reactors 16.1 Comparison of volumes 16.1.1 Irreversible first-order reaction at constant volume 16.1.2 Irreversible second-order reaction at constant volume 16.1.3 Reactions at variable volume 16.2 Productivity 16.3 Yield/Selectivity 16.4 Overall yield 16.4.1 Effect of reaction order 16.4.2 Effects of kinetic constants 16.4.3 Presence of two reactants 16.5 Reactions in series 17 Combination of reactors 17.1 Reactors in series 17.1.1 Calculating the number of reactors in series to an irreversible first-order reaction 17.1.2 Calculating the number of reactors in series for an irreversible second-order reaction 17.1.3 Graphical solution 17.2 Reactors in parallel 17.3 Production rate in reactors in series 17.4 YIELD and selectivity in reactors in series 18 Transport phenomena in heterogeneous systems 18.1 Intraparticle diffusion limitation—pores 18.2 Effectiveness factor 18.3 Effects of intraparticle diffusion on the experimental parameters 18.4 External mass transfer and intraparticle diffusion limitations Part V. Deactivation 19 Catalyst deactivation 19.1 Kinetics of deactivation 19.2 Deactivation in pfr or cstr reactor 19.3 Forced deactivation 19.4 Catalyst regeneration 19.4.1 Differential scanning calorimetry 19.4.2 Temperature programmed oxidation 19.4.3 Catalytic evaluation 19.5 Kinetic study of regeneration 19.5.1 Balance with respect to solid (carbon) 19.5.2 Particular case 20 Exercises reactors and heterogeneous reactors 20.1 Solutions to exercises: Reactors 20.2 Exercises proposed: Reactors 21 Multiphase reacting systems 22 Heterogeneous reactors 22.1 Fixed bed reactor 22.1.1 Reactors in series 22.2 Fluidized bed reactor 23 Nonideal reactors 23.1 Introduction 23.2 Residence time distribution 23.2.1 Ideal cases 23.2.2 Variance 23.3 Nonideal compartmental reactor models Part VI. Catalysis 24 Catalysis: Analyzing variables influencing the catalytic properties 24.1 Introduction 24.2 Selection of catalysts 24.3 Activity patterns 24.3.1 Model reactions 24.3.2 Cyclohexane dehydrogenation 24.3.3 Benzene hydrogenation 24.4 Conventional preparation methods of catalysts 24.4.1 Precipitation/coprecipitation methods 24.4.2 Impregnation of metals on supports 24.4.3 Ion exchange 24.5 Analyses of variables influencing final properties of catalysts 24.5.1 Influence of pH 24.5.2 Autoclaving 24.5.3 Influence of time, concentration, and impregnation cycles 24.6 Thermal treatments 24.6.1 Drying 24.6.2 Calcination 24.7 Effect of reduction temperature on interaction and sintering 24.8 Influence of the support and metal concentration over the reduc-tion 24.9 Influence of the heating rate 24.10 Influence of vapor 24.11 Effect of temperature and reaction time 24.12 Strong metal support interaction 24.13 Experimental design—influence of parameters on the catalytic performance 24.14 Conclusion Part VII. Practices 25 Experimental practices 25.1 Reactions in homogeneous phase 25.1.1 Free radical polymerization of styrene 25.1.2 Polymerization of isobutylene 25.2 Reactions in heterogeneous phase 25.2.1 Experimental system 25.2.2 Determination of activation energy: dehydrogenation of cyclohexane 25.2.3 Kinetic study—methane reforming withCO2—heterogeneous reaction 25.3 Performance of reactors 25.3.1 Batch reactor–hydrogenation of sucrose 25.3.2 Integral continuous flow reactor (tubular)—isomerization of xylenes 25.3.3 Goals References Subject index