دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: [2 ed.]
نویسندگان: König B. (ed.)
سری:
ISBN (شابک) : 9783110576542
ناشر: Walter de Gruyter
سال نشر: 2020
تعداد صفحات: 530
[531]
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 8 Mb
در صورت تبدیل فایل کتاب Chemical Photocatalysis به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب فوتوکاتالیز شیمیایی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
نور مرئی منبع انرژی فراوانی است. در حالی که تبدیل انرژی نور به انرژی الکتریکی (فتوولتائیک) بسیار توسعه یافته و تجاری شده است، استفاده از نور مرئی در سنتز شیمیایی بسیار کمتر مورد بررسی قرار گرفته است. فوتوکاتالیستهای شیمیایی که اصول فتوسنتز بیولوژیکی را تقلید میکنند، از نور مرئی برای هدایت واکنشهای گرماگیر یا دارای مانع جنبشی استفاده میکنند.
Visible light is an abundant source of energy. While the conversion of light energy into electrical energy (photovoltaics) is highly developed and commercialized, the use of visible light in chemical synthesis is far less explored. Chemical photocatalysts that mimic principles of biological photosynthesis utilize visible light to drive endothermic or kinetically hindered reactions.
Cover Half Title Also of interest Chemical Photocatalysis Copyright Preface Preface to the second edition Contents List of contributing authors 1. Early pioneers of organic photochemistry References 2. Photophysics of photocatalysts 2.1 Setting the frame 2.2 The experimentalist’s perspective 2.3 The theoreticians’ perspective: A closer look 2.3.1 Transition probabilities 2.3.2 Orbitals References 3. Flavin photocatalysis 3.1 Introduction 3.1.1 General properties 3.2 Early examples of flavin photocatalysis 3.3 Flavin photocatalysis in synthesis application 3.4 Flavin-related compounds in photocatalysis 3.5 Isomerizations, cyclizations and cycloeliminations 3.6 Photooxidations via singlet oxygen mechanism 3.7 Conclusion References 4. Templated enantioselective photocatalysis 4.1 Introduction 4.2 Early studies. Paternò–Büchi cycloadditions of a chiral aromatic aldehyde and cyclic enamines 4.3 Enantioselective Norrish–Yang cyclization reaction of prochiral imidazolidinones 4.4 Enantioselective photochemical [4 + 4]-cycloadditions and electrocyclic [4π]-ring closure of 2-pyridones 4.5 Enantioselective [6π]-photocyclization of acrylanilides 4.6 Enantioselective Diels–Alder reaction of a photochemically generated ortho-quinodimethane 4.7 Formal [3 + 2]-photocycloadditions of 2-substituted naphthoquinones 4.8 Intramolecular [2 + 2]-photocycloadditions of substituted 5,6-dihydro-1H-pyridin-2-ones 4.9 Enantioselective radical cyclizations 4.9.1 Reductive radical cyclization reactions of 3-(ω-iodoalkylidene)-piperidin-2-ones 4.9.2 Reductive radical cyclization of 3-(3-iodopropoxy)propenoic acid derivatives 4.9.3 Radical cyclization reactions of 4-substituted quinolones 4.10 [2 + 2]-photocycloaddition reactions of isoquinolones 4.11 [2 + 2]-photocycloaddition reactions of substituted quinolones 4.11.1 Intermolecular [2 + 2]-photocycloaddition reactions of quinolones 4.11.2 Inter- and intramolecular [2 + 2]-photocycloadditions of 4-(2′-aminoethyl)quinolones 4.11.3 Intramolecular [2 + 2]-photocycloadditions of 4-(ω-alkenyloxy)-quinol-2-ones 4.12 Light-induced enantioselective catalysis 4.12.1 Enantioselective type II photooygenations of 2-pyridones 4.12.2 Enantioselective addition of α-amino radicals to 3-alkylidene indolin-2-ones 4.12.3 Catalyzed enantioselective photo-induced electron transfer reactions 4.12.4 Xanthone-catalyzed enantioselective [2 + 2]-photocycloadditions of quinolones 4.12.5 Intermolecular enantioselective [2 + 2]-photocycloadditions of pyridones 4.12.6 Enantioselective [2 + 2]-photocycloadditions using visible light 4.13 Conclusion References 5. Photocatalysis with nucleic acids and peptides 5.1 Introduction 5.2 DNA-assisted enantioselective reactions 5.2.1 Photocatalytically active DNA (PhotoDNAzymes) 5.2.2 Benzophenone as photosensitizers for PhotoDNAzymes 5.3 Small peptides as organocatalysts 5.3.1 Development of peptides for photocatalytic addition to styrenes 5.4 Conclusion References 6. Photocatalytic decarboxylations 6.1 Introduction 6.2 Decarboxylative reactions 6.2.1 Reactions via sp3-hybridized radicals from alkyl carboxylic acids Protodecarboxylation Alkylation Vinylation Allylation Alkynylation Arylation C–Heteroatom bond formations 6.2.2 Reactions via sp2-hybridized radicals 6.2.2.1 From aromatic carboxylic acids 6.2.2.2 From α-keto acids Alkylation Vinylation Alkynylation Arylation Amidation 6.2.2.3 From α,β-unsaturated carboxylic acids Alkylation Sulfonylation 6.3 Conclusion References 7. Photoredox catalyzed α-functionalization of amines – visible light mediated carbon-carbon and carbon-hetero bond forming reactions 7.1 Introduction 7.2 Aza-Henry reaction 7.3 Addition of malonates 7.4 Mannich reaction 7.5 Allylation 7.6 Cyanation of tertiary amines 7.7 Alkynylation 7.8 [3+2] cycloaddition reaction 7.9 Acylation 7.10 C-heteroatom (C–P, C–O, C–N) bond formation 7.11 Conclusion References 8. Visible-light photoredox catalysis with [Ru(bpy)3]2+: General principles and the twentieth-century roots 8.1 Introduction 8.2 [Ru(bpy)3]2+ and its photoredox properties 8.3 Application of [Ru(bpy)3]2+ as catalyst in the twentieth century 8.4 Conclusions Abbreviations References 9. Homogeneous visible light mediated transition metal catalysis other than Ruthenium and Iridium 9.1 Introduction 9.2 Copper in visible light catalysis 9.3 Chromium in visible light catalysis 9.4 Iron in visible light catalysis 9.5 Nickel in visible light catalysis 9.6 Zirconium in visible light catalysis 9.7 Molybdenum in visible light catalysis 9.8 Cerium in visible light catalysis 9.9 Rhenium and platinum in visible light catalysis 9.10 Uranium in visible light catalysis 9.11 Summary References 10. Coupling photoredox and biomimetic catalysis for the visible-light-driven oxygenation of organic compounds 10.1 Introduction 10.2 Combining photoredox catalysis with heme-type catalysts 10.3 Combining photoredox catalysis with biomimetic non-heme iron catalysts 10.4 Coupled photoredox catalysts based on copper 10.5 Di- and trinuclear ruthenium dyads for oxygenation 10.6 Biocatalytic oxygenation 10.7 Summary References 11. Synergistic visible light photoredox catalysis 11.1 Introduction 11.2 Stabilized iminium ions 11.2.1 Secondary amine catalyzed Mannich reactions 11.2.2 Coinage metal catalyzed alkynylation reactions 11.2.3 NHC catalyzed acylations 11.3 Electrophilic carbon centered radicals 11.3.1 Secondary amine catalyzed α-alkylation of aldehydes 11.3.2 Palladium-catalyzed C-H arylation 11.3.3 Copper-catalyzed trifluoromethylation of aryl boronic acids 11.3.4 Gold-catalyzed intra- and intermolecular arylative transformationsof alkenes and alkynes 11.4 Nucleophilic carbon centered radicals 11.4.1 Carbonyl radical anion (ketyl radical) and related species 11.4.1.1 Reductive cyclization 11.4.1.2 Intermolecular transformations involving ketyl radical species 11.4.2 α-Amino alkyl radicals 11.4.3 β-Enaminyl radicals 11.4.4 Alkyl radicals in Ni/photoredox dual catalytic cross coupling reactions 11.5 Conclusions and Future Outlook References 12. Excited radical anions and excited anions in visible light photoredox catalysis 12.1 Introduction 12.2 Radical anions as visible light absorbing photosensitizers 12.2.1 Perylene diimide radical anion 12.2.2 Rhodamine 6G (Rh-6G) radical anion 12.2.3 9,10-Dicyanoanthracene (DCA) radical anion 12.2.4 Anthraquinone radical and semiquinone anions 12.3 Excited state anions in visible light photoredox catalysis 12.4 The ground state PAH’s radical anions in visible light photoredox catalysis 12.5 Conclusion References 13. Metal complexes for photohydrogenation and hydrogen evolution 13.1 Analysis of construction components of artificial photocatalytic sy 13.1.1 Chromophore 13.1.2 Electron relay 13.1.3 Redox equivalents 13.1.4 Reduction catalysts 13.1.5 Intramolecular hydrogen evolving photocatalysts 13.1.6 Oxidation catalysts 13.1.7 Intramolecular oxidation catalysts 13.1.8 Comparison of inter- and intramolecular photocatalysis 13.2 Intramolecular photocatalysts for hydrogen production and hydrogenation 13.2.1 Hydrogen production 13.2.2 Photohydrogenation 13.2.3 Photophysics 13.2.4 Ru(tpphz)Pd-type catalysts as photochemical molecular devices (PMD) 13.3 Conclusion References 14. Heterogeneous semiconductor photocatalysis 14.1 Inorganic semiconductors 14.1.1 General features of a photocatalyst 14.1.1.1 Band structure and band gap 14.1.1.2 The fermi level and charge separation 14.1.2 How to tune a photocatalyst 14.1.2.1 Doping and co-catalysts 14.1.2.2 Particle size effect 14.1.3 Selected examples of photocatalysts and their application to organic synthesis 14.1.3.1 TiO2 – an UV active photocatalyst 14.1.3.2 Selected examples of visible light active photocatalysts 14.2 Organic semiconductors 14.2.1 Basic properties of organic semiconductors 14.2.1.1 Band structure and band gap 14.2.1.2 Photoinduced electron transfer – exciton generation and dissociation 14.2.2 Application of conjugated polymers in photocatalysis 14.2.2.1 Linear conjugated polymers 14.2.2.2 Conjugated polymers with layered structure References 15. Polyoxometalates in photocatalysis 15.1 Introduction 15.1.1 Polyoxometalates – molecular metal oxide clusters 15.1.2 Concepts in polyoxometalate photochemistry 15.1.3 The basics of POM photochemistry 15.1.4 Traditional photooxidation of organic substrates 15.2 Recent developments in POM photochemistry 15.2.1 Water oxidation by Ru- and Co-polyoxometalates 15.2.2 Polyoxoniobate water oxidation 15.2.3 Water oxidation by Dawson anions in ionic liquids 15.2.4 Photoreductive CO2-activation 15.2.5 Photoreductive H2 generation 15.3 Optimizing photocatalytic performance of polyoxometalates 15.3.1 Structurally adaptive systems 15.3.2 Optimized photoactivity by metal substitution 15.3.3 Inspiration from the solid-state world 15.4 Conclusion References 16. Description of excited states in photochemistry with theoretical methods 16.1 Introduction 16.2 The concept of PESs 16.3 Computational methods for excited states 16.3.1 QM methods 16.3.1.1 Time-dependent coupled cluster response 16.3.1.2 Time-dependent density functional theory 16.3.2 Solvent description via the QM/MM approach 16.3.2.1 MM methods 16.3.2.2 QM/MM coupling 16.4 Procedure 16.5 Examples 16.6 Roseoflavin 16.7 Benzophenone in dinucleotides 16.8 Photoinduced ring closure in DAE 16.9 Conclusion References 17. Transient absorption with a streak camera 17.1 Introduction 17.2 Experimental setup 17.3 Data analysis 17.3.1 SVD and rank analysis 17.3.2 Global lifetime analysis 17.3.3 Eliminating invalid data 17.3.4 Maximum entropy analysis 17.4 Performance 17.4.1 RFTA alone 17.4.2 Photooxidation of MBA with RFTA 17.5 Discussion 17.6 Conclusion References 18. Time resolved spectroscopy in photocatalysis 18.1 UV/Vis absorption spectroscopy: More than just ε! 18.2 Time-Resolved spectroscopic methods from fs to µs to elucidate photocatalytic processes 18.2.1 Transient absorption spectroscopy: Signals, time scales, and data processing 18.2.2 Spectroscopy on the fs to ps time scale 18.2.3 Spectroscopy on the ns to μs time scale 18.2.4 Rate models and the determination of the species associated spectra of the intermediate states 18.3 Diffusion limited reactions 18.3.1 Diffusion limited excited state quenching with time dependent reaction rate 18.3.2 Application of the diffusion fit function to experimental data 18.4 Costs of photocatalysis: The reaction quantum yield 18.4.1 Requirements for an accurate definition of the quantum yield 18.4.2 Determination of the quantity of excited molecules in transient absorption measurements 18.4.3 Example of the spectroscopic determination of reaction quantum yields: Flavin photocatalysis 18.5 From light absorption to chemistry: Sensitizing mechanisms in homogeneous photocatalysis 18.5.1 Sensitization by excitation energy transfer 18.5.2 Photoredox catalysis: Requirements on catalyst and substrate 18.6 Epilogue References Index