ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Chemical Engineering Process Simulation

دانلود کتاب شبیه سازی فرآیند مهندسی شیمی

Chemical Engineering Process Simulation

مشخصات کتاب

Chemical Engineering Process Simulation

ویرایش: [2 ed.] 
نویسندگان:   
سری:  
ISBN (شابک) : 9780323901680 
ناشر: Elsevier 
سال نشر: 2023 
تعداد صفحات: [497] 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 22 Mb 

قیمت کتاب (تومان) : 42,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 10


در صورت تبدیل فایل کتاب Chemical Engineering Process Simulation به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب شبیه سازی فرآیند مهندسی شیمی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب شبیه سازی فرآیند مهندسی شیمی

شبیه سازی فرآیند مهندسی شیمی، ویرایش دوم همچنان شما را از طریق فرآیندهای شیمیایی و عملیات واحد با استفاده از نرم افزار اصلی شبیه سازی مورد استفاده در بخش صنعتی راهنمایی می کند. این کتاب به شما کمک می‌کند ویژگی‌های یک فرآیند را با استفاده از مدل‌های ریاضی و ابزارهای شبیه‌سازی فرآیند به کمک رایانه پیش‌بینی کنید، همچنین عملکرد فرآیند را قبل از طراحی دقیق فرآیند مدل‌سازی و شبیه‌سازی کنید. پوشش محتوا شامل شبیه‌سازی‌های پایدار و پویا، شباهت‌ها و تفاوت‌های بین شبیه‌سازهای فرآیند، مقدمه‌ای بر واحدهای عملیاتی، و نکات و ترفندهای همگرایی است. همچنین در مورد استفاده از شبیه‌سازی برای مطالعات ریسک برای افزایش انعطاف‌پذیری فرآیند، عیب‌یابی در موقعیت‌های غیرعادی، و آموزش اپراتورها برای کنترل فرآیند در موقعیت‌های دشوار، یاد خواهید گرفت. این تیم نویسنده با تجربه، دانش صنعت را با روش‌های آموزشی مؤثر ترکیب می‌کند تا یک راهنمای جامع در دسترس و واضح برای شبیه‌سازی فرآیند ایجاد کند. این نسخه دوم کاملاً اصلاح شده، به روز شده و توسعه یافته موضوعات کاملاً جدیدی را در بر می گیرد: طراح SuperPro برای مدل سازی فرآیندهای بیوشیمیایی، دارویی، مواد غذایی و فاضلاب Aspen ICARUS برای ارزیابی اقتصادی استفاده از Aspen HYSYS برای مدل سازی تقطیر شبیه سازی و بهینه سازی شبیه سازی دینامیک استفاده از ICON برای پایه و موضوعات پیشرفته


توضیحاتی درمورد کتاب به خارجی

Chemical Engineering Process Simulation, Second Edition continues to guide you through chemical processes and unit operations using the main simulation software used in the industrial sector. The book helps you predict the characteristics of a process using mathematical models and computer-aided process simulation tools, as well as model and simulate process performance before detailed process design takes place. Content coverage includes steady and dynamic simulations, the similarities and differences between process simulators, an introduction to operating units, and convergence tips and tricks. You will also learn about the use of simulation for risk studies to enhance process resilience, fault finding in abnormal situations, and for training operators to control the process in difficult situations. This experienced author team combines industry knowledge with effective teaching methods to make an accessible and clear comprehensive guide to process simulation. This fully revised, updated and expanded second edition covers fully new topics on: SuperPro Designer for modelling of biochemical, pharmaceutical, food and wastewater processes Aspen ICARUS for economic evaluation Use of Aspen HYSYS for distillation modelling Simulation and optimisation Dynamic simulation Use of ICON for basic and advanced topics



فهرست مطالب

Front Cover
Chemical Engineering Process Simulation
Chemical Engineering Process Simulation
Copyright
Contents
Contributors
Acknowledgments
How to use this book
I -
Basics of process simulation
	1 - Introduction to process simulation∗
		1.1 Process design and simulation
		1.2 Historical perspective for process simulation
		1.3 Basic architectures for commercial software
		1.4 Basic algorithms for process simulation
			1.4.1 Sequential modular approach
			1.4.2 Equation-oriented approach
		1.5 Degrees of freedom analysis
		1.6 Incorporation of process synthesis model and sequential modular approach
			1.6.1 Ten good habits for process simulation
		Exercises
		References
		Further reading
	2 - Registration of new components∗
		2.1 Registration of hypothetical components
			2.1.1 Hypothetical component registration with Aspen HYSYS
			2.1.2 Hypothetical component registration with PRO/II
		2.2 Registration of crude oil
		Exercise
		References
	3 - Physical property estimation and phase behavior for process simulation∗
		3.1 Chemical engineering processes
			3.1.1 Inlet separator
			3.1.2 Heat exchanger
			3.1.3 Gas compressor
		3.2 Thermodynamic processes
			3.2.1 Characteristic thermodynamic relationships (Smith et al.)
				3.2.1.1 Internal energy (U)
				3.2.1.2 Enthalpy (H)
				3.2.1.3 Entropy (S)
				3.2.1.4 Gibbs free energy (G)
				3.2.1.5 Helmholtz free energy (A)
			3.2.2 Maxwell relationships
		3.3 Equations of state
			3.3.1 The ideal gas law (c.1834)
			3.3.2 Corrections to the ideal gas law (cubic equations of state)
				3.3.2.1 Van der Waals
				3.3.2.2 Redlich–Kwong
				3.3.2.3 Peng–Robinson
				3.3.2.4 Reducing the “attractive force”
				3.3.2.5 Increasing the “attractive force”
		3.4 Liquid volumes (Walas, 1985)
		3.5 Viscosity and other properties
		3.6 Phase equilibria
			3.6.1 Vapor phase correction
			3.6.2 Liquid phase corrections
			3.6.3 Bringing it all together
		3.7 Flash calculations (Smith and Van Ness, 1975)
			3.7.1 “MESH” equations
				3.7.1.1 Material balance
				3.7.1.2 Equilibrium
				3.7.1.3 Summation
				3.7.1.4 Heat balance
			3.7.2 Bubble point flash
				3.7.2.1 Methodology
			3.7.3 Dew point flash
			3.7.4 Two-phase pressure–temperature flash
			3.7.5 Other flash routines
		3.8 Phase diagrams
			3.8.1 Pressure–temperature diagrams of pure components and mixtures
			3.8.2 Retrograde behavior
		3.9 Conclusions
		Exercises
		References
	4 - Simulation of recycle streams∗
		4.1 Types of recycle streams
		4.2 Tips in handling recycle streams
			4.2.1 Analyze the flowsheet
			4.2.2 Provide estimates for recycle streams
			4.2.3 Simplify the flowsheet
			4.2.4 Avoid overspecifying mass balance
			4.2.5 Check for trapped material
			4.2.6 Increase number of iterations
		4.3 Recycle convergence and acceleration techniques
		Exercises
		References
		Further reading
II -
UniSim design
	5 - Basics of process simulation with UniSim design∗
		5.1 Example on n-octane production
		5.2 Stage 1: basic simulation setup
		5.3 Stage 2: modeling of reactor
		5.4 Stage 3: modeling of separation unit
		5.5 Stage 4: modeling of recycle system
			5.5.1 Material recycle system
			5.5.2 Energy recycle system
		5.6 Conclusions
		Exercises
		References
	6 - Design and simulation of distillation processes∗
		6.1 Fundamentals of distillation calculations
		6.2 Distillation column simulation
		6.3 Debutanizer example
			6.3.1 Setting up the problem
			6.3.2 Operating pressure selection
			6.3.3 Effect of pressure on relative volatility
			6.3.4 Effect of pressure on utility selection
		6.4 Preliminary design using short cut distillation
		6.5 Rigorous distillation column design
		6.6 Conclusions
		Exercises
		References
	7 - Modeling and optimization of separation and heating medium systems for offshore platform∗
		7.1 Oil and gas processing facility for offshore platform
		7.2 Modeling of oil and gas processing facilities
		7.3 Process optimization of heating medium systems
		7.4 Heat exchanger design consideration
		Exercises
		References
III -
Symmetry
	8 - Basics of process simulation with Symmetry∗
		8.1 Example on n-octane production
		8.2 Establishing the thermodynamic model
		8.3 Process modeling
			8.3.1 Defining reactor inlet feed streams
			8.3.2 Modeling of reactor
			8.3.3 Modeling of separation units
			8.3.4 Modeling of recycle systems
		8.4 Conclusions
		Exercises
		Reference
	9 - Process modeling and analysis of a natural gas dehydration process using tri-ethylene glycol (TEG) via Symmetry∗
		9.1 Introduction
		9.2 Process description
		9.3 Process simulation
			9.3.1 Thermodynamic model and feed stream specification
			9.3.2 Base case simulation
		9.4 Dew point evaluation with Case Study tool
		9.5 Process improvement with optimizer
		9.6 Conclusions
		Exercises
		References
IV -
SuperPro designer
	10 - Basics of batch process simulation with SuperPro Designer∗
		10.1 Basic steps for batch process simulation
		10.2 Case study on biochemical production
		10.3 Basic simulation setup
		10.4 Setting for vessel procedure
			10.4.1 Spray drying procedure
			10.4.2 Process scheduling
			10.4.3 Strategies for batch process debottlenecking
			10.4.4 Economic evaluation
		10.5 Conclusion
		10.6 Further reading
		Exercise
		References
	11 - Modeling of citric acid production using SuperPro Designer∗
		11.1 Introduction
		11.2 Process description
			11.2.1 Fermentation section
			11.2.2 Isolation section
		11.3 Model setup highlights
			11.3.1 Material charges
			11.3.2 Modeling the fermentation step
			11.3.3 Modeling the cleaning operations
		11.4 Scheduling setup
			11.4.1 Operating in staggered mode
			11.4.2 Operating with independent cycling
			11.4.3 Calculating the minimum cycle time
		11.5 Process simulation results
		11.6 Process scheduling and debottlenecking
		11.7 Process economics
			11.7.1 Capital investment costs
			11.7.2 Operating costs
			11.7.3 Economic evaluation
		11.8 Variability analysis
		11.9 Conclusions
		Exercises
			Exercise 1: Decreasing the cycle time
			Exercise 2: Increasing the batch size
		Acknowledgments
		References
		Further reading
	12 - Design and optimization of wastewater treatment plant (WWTP) for the poultry industry∗
		12.1 Introduction
		12.2 Case study: poultry WWTP
		12.3 Base case simulation model
		12.4 Process optimization
		12.5 Conclusion
		12.6 Appendix A
		12.7 Exercise
		References
V -
aspenONE engineering
	13 - Basics of process simulation with Aspen HYSYS∗
		13.1 Example on n-octane production
		Exercise
		References
	14 - Process simulation and design for acetaldehyde production∗
		14.1 Introduction
		14.2 Process simulation
			14.2.1 Simulation setup
			14.2.2 Process flowsheeting
				14.2.2.1 Dehydrogenation of ethanol and phase separation
				14.2.2.2 Hydrogen recovery
				14.2.2.3 Acetaldehyde purification
		14.3 Process analysis/potential process enhancement
			14.3.1 Energy recovery
			14.3.2 Operating temperature of flash separator
		14.4 Conclusion
		Exercises
		References
	15 - Dynamic simulation for process control with Aspen HYSYS∗
		15.1 Introduction
		15.2 Dynamic model overview
			15.2.1 Steady-state and dynamic models
			15.2.2 Dynamic model usage
		15.3 Dynamic modeling concepts2
			15.3.1 Hold-up
				15.3.1.1 Material hold-up
				15.3.1.2 Energy hold-up
			15.3.2 Pressure-flow hydraulics
				15.3.2.1 Definition of flow conductance
					15.3.2.1.1 Direct flow conductance specification
					15.3.2.1.2 Valves
					15.3.2.1.3 Piping hydraulics
				15.3.2.2 Head and energy terms
			15.3.3 Dynamic model information requirements
			15.3.4 Setting up a dynamic model in Aspen HYSYS
				15.3.4.1 Creating a steady-state model
				15.3.4.2 Equipment parameter and flowsheet pressure flow configuration
				15.3.4.3 Numerical solver configuration
		15.4 Constructing a dynamic model in HYSYS (Aspentech Ltd, 2021)
			15.4.1 Steady-state process modeling4
			15.4.2 Setting up dynamic parameters in the steady-state environment
				15.4.2.1 Valve
				15.4.2.2 Separator
				15.4.2.3 Pump
				15.4.2.4 Heat exchanger
					15.4.2.4.1 Duty
					15.4.2.4.2 Volume
					15.4.2.4.3 Pressure-flow hydraulics
				15.4.2.5 Pipe
				15.4.2.6 Controllers
				15.4.2.7 Stream pressure boundaries within the battery limit
				15.4.2.8 Integrator settings
			15.4.3 Transitioning to dynamics8
		15.5 Using a dynamic model for process control tuning
			15.5.1 Single loop feedback control overview
				15.5.1.1 Definition of feedback control
				15.5.1.2 PID control
			15.5.2 Setting up the tuning scenario9
			15.5.3 Running the case studies
			15.5.4 Other tuning strategies
				15.5.4.1 Ziegler-Nichols
				15.5.4.2 Auto-tune variation (ATV) technique
		15.6 Conclusion
		Exercises
		References
		Further reading
	16 - Basics of process simulation with Aspen Plus∗
		16.1 Example on n-octane production
			16.1.1 Stage 1: simulation setup in properties environment
			16.1.2 Stage 2: modeling of reactor in Simulation environment
			16.1.3 Stage 3: modeling of separator in Simulation environment
			16.1.4 Stage 4: modeling of recycling in the Simulation environment
			16.1.5 Stage 5: simulation of heat integration scheme
		16.2 Summary of the n-octane simulation
		References
		Further readings
	17 - Design and evaluation of alternative processes for the manufacturing of bio-jet fuel (BJF) intermediate∗
		17.1 Introduction
		17.2 Overview
			17.2.1 Components and physical properties
			17.2.2 Reaction kinetics of the aldol condensation reaction
			17.2.3 Economic evaluation and CO2 emission analysis
		17.3 Process development
			17.3.1 Scheme 12
				17.3.1.1 Steam-stripping
				17.3.1.2 Distillation-based furfural separation
			17.3.2 Scheme 23
			17.3.3 Scheme 34
			17.3.4 Aldol condensation process
		17.4 Process analysis
			17.4.1 Economic evaluation
			17.4.2 CO2 emission analysis
			17.4.3 Future prospects in BJF production
		17.5 Conclusion
		Exercise
		Appendix
		References
	18 - Production of diethyl carbonate from direct CO2 conversion∗
		18.1 Introduction
		18.2 Process overview
			18.2.1 Physical properties
			18.2.2 Reaction pathway and kinetic expression
			18.2.3 Basis for evaluating the process economics and carbon emission
				18.2.3.1 Economics
				18.2.3.2 Carbon emission
		18.3 The direct CO2-to-DEC process
			18.3.1 Process development
			18.3.2 Optimization
		18.4 Techno-economic and CO2 emission analysis
			18.4.1 Techno-economic analysis
			18.4.2 CO2-emission analysis
		18.5 Conclusions
		Exercises
		Appendix
			A.1 Parameters for pure-component properties
			A.2 Binary interaction parameters for the NRTL model
			A.3 Parameters for Henry's constant equation (temperature in °C)
		Supplementary materials
		References
	19 - Multiplatform optimization on unit operation and process designs∗
		19.1 Introduction
		19.2 Aspen Plus automation interface
		19.3 COM objects in MATLAB
		19.4 Aspen Simulation Workbook (ASW)
		19.5 Multiplatform optimization
			19.5.1 Case study—dichloro-methane solvent recovery system
			19.5.2 Sensitivity analysis with automation interface in MATLAB
			19.5.3 Multiobjective and multilevel problem under multiplatform optimization with automation interface in MATLAB
			19.5.4 Sensitivity analysis with automation interface in excel using ASW
		19.6 Conclusion
		Exercises
		References
	20 - Flexible design strategy for process controllability∗
		20.1 Introduction
		20.2 Flexibility index model
		20.3 Aspen Plus RCSTR module case study
		20.4 Vertex methods for calculating FI of RCSTR
		20.5 Aspen Plus Dynamics for RCSTR controllability verification
		20.6 Conclusion
		Exercises
		References
Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	M
	O
	P
	R
	S
	T
	U
	V
	W
Back Cover




نظرات کاربران