ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Chemical Engineering Principles and Applications

دانلود کتاب اصول و کاربردهای مهندسی شیمی

Chemical Engineering Principles and Applications

مشخصات کتاب

Chemical Engineering Principles and Applications

ویرایش:  
نویسندگان:   
سری:  
ISBN (شابک) : 9783031278785, 9783031278792 
ناشر: Springer 
سال نشر: 2023 
تعداد صفحات: [510] 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 18 Mb 

قیمت کتاب (تومان) : 29,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 8


در صورت تبدیل فایل کتاب Chemical Engineering Principles and Applications به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب اصول و کاربردهای مهندسی شیمی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب اصول و کاربردهای مهندسی شیمی

این متن با استفاده از ارائه ای دقیق و در عین حال آسان برای پیگیری، درک روشن و مختصری از اصول و کاربردهای مهندسی شیمی ارائه می دهد. پوشش گسترده است و شامل تمام مفاهیم مرتبط مانند تعادل جرم و انرژی، انتقال جرم، مهندسی واکنش شیمیایی و بسیاری موارد دیگر است. توضیح اصول با مثال‌ها و مشکلات تمرینی با راه‌حل‌های دقیق بیشتر تقویت می‌شود. این کتاب که به طور محکم در اصول پایه گذاری شده است، ظرفیت خوانندگان را برای مقابله با مشکلات و چالش های جدید در این زمینه با اعتماد به نفس و اعتقاد به حداکثر می رساند. این کتاب با ارائه یک مرجع آماده و بررسی اصول ضروری و کاربردهای آنها در مهندسی شیمی، برای دانشجویان کارشناسی مهندسی شیمی و همچنین مهندسین شاغلی که برای آزمون‌های مجوز مهندسی (FE و PE) در ایالات متحده و خارج از کشور آماده می‌شوند، ایده‌آل است.


توضیحاتی درمورد کتاب به خارجی

This text provides a clear and concise understanding of the principles and applications of chemical engineering using a rigorous, yet easy-to-follow, presentation. The coverage is broad, and it includes all the relevant concepts such as mass and energy balances, mass transfer, chemical reaction engineering, and many more. Elucidation of the principles is further reinforced by examples and practice problems with detailed solutions. Firmly grounded in the fundamentals, the book maximizes readers’ capacity to take on new problems and challenges in the field with confidence and conviction. Providing a ready reference and review of essential principles and their applications in chemical engineering, the book is ideal for undergraduate chemical engineering students, as well as practicing engineers preparing for the engineering license exams (FE and PE) in USA and abroad.



فهرست مطالب

Preface
Contents
Chapter 1: Mass and Energy Balances
	1.1 Introduction
	1.2 Mass Balances
		1.2.1 Fundamental Mass Balance Equation
		1.2.2 Mass Balances for Steady-State, Non-reactive Systems
		1.2.3 Mass Balances for Steady-State, Reactive Systems
			1.2.3.1 Limiting and Excess Reactants
			1.2.3.2 Multiple Reactions - Conversion, Extent of Reaction, Selectivity, and Yield
		1.2.4 Mass Balances for Systems with Recycle
		1.2.5 Mass Balances for Systems with Bypass
		1.2.6 Mass Balances for Non-reactive Unsteady-State Systems
	1.3 Energy Balances
		1.3.1 Energy Balance for Closed Systems - First Law of Thermodynamics
		1.3.2 Fundamental Energy Balance Equation
			1.3.2.1 Steady-State Energy Balance
		1.3.3 Energy Balances for Reactive Processes
			1.3.3.1 Definitions of Thermochemical Data
			1.3.3.2 Hess´s Law
			1.3.3.3 General Procedure for Energy Balances for Reactive Processes
	1.4 Mass and Energy Balances for Combustion Reactions
		1.4.1 Introduction
		1.4.2 Heating Value of Fuels
		1.4.3 Stoichiometry of Combustion Reactions, Theoretical and Excess Air
		1.4.4 Analysis of Combustion Products - Flue Gas Analysis
		1.4.5 Dew Point of Combustion Products
		1.4.6 Combustion of Coal - Use of Gravimetric Analysis of Coal
	Practice Problems
		Practice Problem 1.1
		Practice Problem 1.2
		Practice Problem 1.3
		Practice Problem 1.4
		Practice Problem 1.5
		Practice Problem 1.6
		Practice Problem 1.7
		Practice Problem 1.8
		Practice Problem 1.9
		Practice Problem 1.10
	Solutions to Practice Problems
		Practice Problem 1.1
			Solution
		Practice Problem 1.2
			Solution
		Practice Problem 1.3
			Solution
		Practice Problem 1.4
			Solution
		Practice Problem 1.5
			Solution
		Practice Problem 1.6
			Solution
		Practice Problem 1.7
			Solution
		Practice Problem 1.8
			Solution
		Practice Problem 1.9
			Solution
		Practice Problem 1.10
			Solution
	References
Chapter 2: Chemical Thermodynamics
	2.1 Introduction
	2.2 Equations of State
		2.2.1 Ideal Gas Equation
		2.2.2 Real Gas Equations of State
			2.2.2.1 Van Der Waals Equation
			2.2.2.2 Redlich-Kwong Equation
		2.2.3 Generalized Compressibility Chart - Compressibility Factor
		2.2.4 Ideal Gas Mixtures
			2.2.4.1 Definitions and Laws for Ideal Gas Mixtures
	2.3 Thermodynamic Property Tables
		2.3.1 Steam Tables
			2.3.1.1 Saturated Steam Tables
			2.3.1.2 Superheated Steam Tables
		2.3.2 Phase Diagram for Water
		2.3.3 Properties of Liquid-Vapor Mixtures
		2.3.4 Properties of Compressed Liquid
	2.4 Thermodynamic Charts
		2.4.1 Mollier Diagram
		2.4.2 Pressure-Enthalpy (P-h) Phase Diagram
	2.5 Vapor-Liquid Equilibrium (VLE)
		2.5.1 VLE Relationships for Ideal Solutions
			2.5.1.1 Raoult´s Law
			2.5.1.2 Henry´s Law
		2.5.2 VLE Relationships for Non-ideal Systems
		2.5.3 Distribution Coefficients for VLE Involving Multicomponent Systems
		2.5.4 Generating VLE Curve Using Relative Volatility Data
		2.5.5 Bubble Point and Dew Point Calculations
		2.5.6 Azeotropic Mixtures
	2.6 Gibbs Free Energy Change and Phase Transitions
		2.6.1 Clausius-Clapeyron Equation for Phase Transition
	2.7 Chemical Equilibrium
		2.7.1 Characteristics of Chemical Equilibrium
		2.7.2 Position of Equilibrium - Equilibrium Constant
		2.7.3 Equilibrium Calculations
			2.7.3.1 Calculation of the Equilibrium Constant, KC, and Unknown Concentrations
			2.7.3.2 Equilibrium Constant Based on Partial Pressures KP, and the Relationship Between KP and KC
		2.7.4 Disruptions to Equilibrium State - Le Chatelier´s Principle
			2.7.4.1 Responses to Changes in Concentration of a Species
			2.7.4.2 Responses to Changes in Temperature of the System
			2.7.4.3 Responses to Changes in Pressure of the System
		2.7.5 Gibbs Free Energy Change and Chemical Equilibrium
		2.7.6 Temperature Dependence of Equilibrium Constant - The Van´t-Hoff Equation
	Practice Problems
		Practice Problem 2.1
		Practice Problem 2.2
		Practice Problem 2.3
		Practice Problem 2.4
		Practice Problem 2.5
		Practice Problem 2.6
		Practice Problem 2.7
		Practice Problem 2.8
		Practice Problem 2.9
		Practice Problem 2.10
		Practice Problem 2.11
		Practice Problem 2.12
		Practice Problem 2.13
		Practice Problem 2.14
		Practice Problem 2.15
		Practice Problem 2.16
		Practice Problem 2.17
		Practice Problem 2.18
		Practice Problem 2.19
	Solutions to Practice Problems
		Practice Problem 2.1
			Solution
		Practice Problem 2.2
			Solution
		Practice Problem 2.3
			Solution
		Practice Problem 2.4
			Solution
		Practice Problem 2.5
			Solution
		Practice Problem 2.6
			Solution
		Practice Problem 2.7
			Solution
		Practice Problem 2.8
			Solution
		Practice Problem 2.9
			Solution
		Practice Problem 2.10
			Solution
		Practice Problem 2.11
			Solution
		Practice Problem 2.12
			Solution
		Practice Problem 2.13
			Solution
		Practice Problem 2.14
			Solution
		Practice Problem 2.15
			Solution
		Practice Problem 2.16
			Solution
		Practice Problem 2.17
			Solution
		Practice Problem 2.18
			Solution
		Practice Problem 2.19
			Solution
	References
Chapter 3: Fluid Mechanics and Momentum Transfer
	3.1 Role of Fluid Mechanics in Chemical Engineering
	3.2 Fluid Properties and Fundamentals
	3.3 Fluid Statics and Manometers
		3.3.1 Static Pressure and Pressure Head
		3.3.2 Differential Manometers
	3.4 Fluid Dynamics
		3.4.1 Conservation of Mass - Continuity Equation
		3.4.2 Laminar Flow and Turbulent Flow Through Pipes
		3.4.3 Reynolds Number
		3.4.4 Friction Head Loss and Pressure Drop for Fluid Flow in Pipes
	3.5 Calculating the Friction Head Loss for Pipe Flow
		3.5.1 Fanning Friction Factor
		3.5.2 Equations for Calculating Friction Factors
		3.5.3 Hagen-Poiseuille Equation
	3.6 Flow Through Non-circular Cross Sections
	3.7 Flow Through Pipe Networks
	3.8 Head Loss Through Fittings and Valves - Minor Losses
		3.8.1 Velocity Head Method
		3.8.2 Equivalent Length Method
		3.8.3 Other, Miscellaneous Minor Losses - Pipe Entrance, Pipe Exit, Change in Pipe Cross Section
	3.9 The Mechanical Energy Equation
		3.9.1 Bernoulli´s Equation
		3.9.2 Pump Power Equation
		3.9.3 Pump Performance Parameters
	3.10 Flow Measurement
		3.10.1 Introduction
		3.10.2 Pitot Tube
		3.10.3 Orifice Meter
		3.10.4 Venturi Meter
		3.10.5 Orifice Meter and Venturi Meter Comparison
			3.10.5.1 Calculation of Permanent Pressure Loss in an Orifice Meter
	3.11 Flow Through Packed Beds
		3.11.1 Calculation of Pressure Drop in Packed Columns
		3.11.2 Operation of Packed Columns - Generalized Pressure Drop Correlations and Flooding
			3.11.2.1 Generalized Pressure Drop Correlations
			3.11.2.2 Flooding in Packed Columns
	3.12 Fluidized Beds
	3.13 Compressible Flow
		3.13.1 Introduction
		3.13.2 Continuity Equation for Compressible Flow
		3.13.3 Mach Number and Its Significance in Compressible Flow
		3.13.4 Isentropic Gas Flow
		3.13.5 Application of the Steady Flow Energy Equation for Isentropic Flows
		3.13.6 Stagnation - Static Relationships
		3.13.7 Isentropic Flow with Area Changes
		3.13.8 Adiabatic Compressible Flow with Friction Loss
	Practice Problems
		Practice Problem 3.1
		Practice Problem 3.2
		Practice Problem 3.3
		Practice Problem 3.4
		Practice Problem 3.5
		Practice Problem 3.6
		Practice Problem 3.7
		Practice Problem 3.8
		Practice Problem 3.9
		Practice Problem 3.10
		Practice Problem 3.11
		Practice Problem 3.12
	Solutions to Practice Problems
		Practice Problem 3.1
			Solution
		Practice Problem 3.2
			Solution
		Practice Problem 3.3
			Solution
		Practice Problem 3.4
			Solution
		Practice Problem 3.5
			Solution
		Practice Problem 3.6
			Solution
		Practice Problem 3.7
			Solution
		Practice Problem 3.8
			Solution
		Practice Problem 3.9
			Solution
		Practice Problem 3.10
			Solution
		Practice Problem 3.11
			Solution
		Practice Problem 3.12
			Solution
	References
Chapter 4: Heat Transfer
	4.1 Introduction
		4.1.1 General Equation for Modeling of Heat Transfer
		4.1.2 Heat Transfer Modes
	4.2 Conduction Heat Transfer
		4.2.1 Conduction Through a Rectangular Slab
			4.2.1.1 Multilayer Conduction
		4.2.2 Conduction Through a Cylindrical Wall
		4.2.3 Conduction Through a Spherical Wall
	4.3 Convection Heat Transfer
		4.3.1 Convection Heat Transfer Resistance
		4.3.2 Dimensionless Parameters Used in Heat Transfer
		4.3.3 Correlations Used in Calculating Convection Heat Transfer Coefficients
		4.3.4 Typical Range of Convection Heat Transfer Coefficients
		4.3.5 Overall Heat Transfer Coefficients in Conduction-Convection Systems
		4.3.6 Order of Magnitude Analysis to Determine the Value of Overall Heat Transfer Coefficients
	4.4 Heat Exchangers
		4.4.1 Heat Balance
		4.4.2 Log Mean Temperature Difference (LMTD)
		4.4.3 Overall Heat Transfer Coefficient for Heat Exchangers
		4.4.4 Heat Exchanger Design Equation
		4.4.5 LMTD Correction Factors
		4.4.6 Heat Exchanger Effectiveness
		4.4.7 Effectiveness-NTU Method
	4.5 Radiation
		4.5.1 Stefan-Boltzmann´s Law of Thermal Radiation
		4.5.2 Non-Ideal Radiators - Gray Bodies
		4.5.3 Absorptivity, Transmissivity, and Reflectivity
		4.5.4 Radiation View Factor
		4.5.5 View Factor Relationships
		4.5.6 Calculation of Net Radiation Heat Transfer
		4.5.7 Radiation Heat Transfer from a Small Object to an Enclosure, Both Being Gray Bodies
		4.5.8 Correction for Thermocouple Readings
	Practice Problems
		Practice Problem 4.1
		Practice Problem 4.2
		Practice Problem 4.3
		Practice Problem 4.4
		Practice Problem 4.5
	Solutions to Practice Problems
		Practice Problem 4.1
			Solution
		Practice Problem 4.2
			Solution
		Practice Problem 4.3
			Solution
		Practice Problem 4.4
			Solution
		Practice Problem 4.5
			Solution
	References
Chapter 5: Mass Transfer
	5.1 Introduction
	5.2 Molecular Diffusion
	5.3 Mass Transfer Coefficients and Interphase Mass Transfer
		5.3.1 Interphase Mass Transfer
	5.4 Gas Absorption and Stripping
		5.4.1 Process Design of Absorption Columns
			5.4.1.1 Height of Packing Required, Height of a Transfer Unit (HTU), and Number of Transfer Units (NTU) for Gas Absorption Col...
	5.5 Distillation
		5.5.1 Batch Distillation
		5.5.2 Continuous Distillation
			5.5.2.1 McCabe-Thiele Method for Determining Theoretical Stages
			5.5.2.2 q Line and Feed Condition
			5.5.2.3 Reflux Ratio Range and Optimum Reflux Ratio
			5.5.2.4 Construction of McCabe-Thiele Diagram
			5.5.2.5 Determining Minimum Number of Theoretical Stages Using Fenske Equation
	5.6 Psychrometrics and Psychrometric Chart
		5.6.1 Moist Air Properties and Definitions
		5.6.2 Finding Moist Air Properties from Psychrometric Chart
	5.7 Cooling Towers
	5.8 Drying
		5.8.1 Drying Mechanism and Rate of Drying
			5.8.1.1 Determining the Time Required for Drying
		5.8.2 Adiabatic Drying and Adiabatic Saturation Process
	5.9 Liquid-Liquid Extraction
		5.9.1 Ternary Phase Diagrams
		5.9.2  Lever Rule
		5.9.3 Multistage Extractions
			5.9.3.1 Finding the Number of Transfer Units Required in Counterflow Multistage Extraction
			5.9.3.2 Finding the Number of Theoretical Stages Required Using Extraction Factor and Distribution Coefficient
	5.10 Leaching
		5.10.1 Batch Leaching Process
		5.10.2 Single-Stage Continuous Counterflow Leaching Process
		5.10.3 Multistage Continuous Counterflow Leaching
		5.10.4 Determining Number of Stages Required Using the R-Factor
	5.11 Adsorption Process
		5.11.1 Adsorption Equilibrium
		5.11.2 Continuous Multistage Counterflow Adsorption
	5.12 Crystallization
		5.12.1 Crystallization Process Calculations
	5.13 Evaporation
		5.13.1 Single-Effect Evaporator
		5.13.2 Multiple-Effect Evaporator
	Practice Problems
		Practice Problem 5.1
		Practice Problem 5.2
		Practice Problem 5.3
		Practice Problem 5.4
		Practice Problem 5.5
		Practice Problem 5.6
		Practice Problem 5.7
		Practice Problem 5.8
		Practice Problem 5.9
	Solutions to Practice Problems
		Practice Problem 5.1
			Solution
		Practice Problem 5.2
			Solution
		Practice Problem 5.3
			Solution
		Practice Problem 5.4
			Solution
		Practice Problem 5.5
			Solution
		Practice Problem 5.6
			Solution
		Practice Problem 5.7
			Solution
		Practice Problem 5.8
			Solution
		Practice Problem 5.9
			Solution
	References
Chapter 6: Chemical Reaction Engineering and Kinetics
	6.1 Introduction
	6.2 Key Definitions in Chemical Reaction Engineering
	6.3 Arrhenius Equation - Effect of Temperature on the Rate Constant
	6.4 Constant Volume and Variable Volume Systems
	6.5 List of Useful Integrals in Reactor Design
	6.6 Reactor Types, Design Equations, and Applications
		6.6.1 Batch Reactor
			6.6.1.1 Design (or Performance) Equation for a Batch Reactor
		6.6.2 Mixed Flow Reactor
			6.6.2.1 Design Equation for a Mixed Flow Reactor
		6.6.3 Plug Flow Reactor
			6.6.3.1 Design Equation for Plug Flow Reactor
		6.6.4 Comparison of Volumes of Mixed Flow Reactor and Plug Flow Reactor
		6.6.5 CSTRs in Series
	Practice Problems
		Practice Problem 6.1
		Practice Problem 6.2
		Practice Problem 6.3
		Practice Problem 6.4
		Practice Problem 6.5
		Practice Problem 6.6
	Solutions to Practice Problems
		Practice Problem 6.1
			Solution
		Practice Problem 6.2
			Solution
		Practice Problem 6.3
			Solution
		Practice Problem 6.4
			Solution
		Practice Problem 6.5
			Solution
		Practice Problem 6.6
			Solution
	References
Chapter 7: Transport Phenomenon
	7.1 Introduction
	7.2 Mass Transfer Correlations
	7.3 Analogies Between Momentum, Heat, and Mass Transfer
		7.3.1 Stanton Number for Heat Transfer
		7.3.2 Colburn Factor for Heat Transfer
		7.3.3 Stanton Number for Mass Transfer
		7.3.4 Colburn Factor for Mass Transfer
		7.3.5 Chilton-Colburn Analogy Between Momentum, Heat, and Mass Transfer
	References
Index




نظرات کاربران