دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 2
نویسندگان: Yeong-Koo Yeo
سری:
ISBN (شابک) : 2020043323, 9780367547844
ناشر: CRC Press
سال نشر: 2020
تعداد صفحات: 849
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 56 مگابایت
در صورت تبدیل فایل کتاب Chemical Engineering Computation with MATLAB به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب محاسبات مهندسی شیمی با MATLAB نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Cover Half Title Title Page Copyright Page Contents Preface Acknowledgments Author 1. Introduction to MATLABⓇ 1.1. Starting MATLAB 1.1.1. Entering Commands in the Command Window 1.1.2. help Command 1.1.3. Exiting MATLAB 1.2. Operations and Assignment of Variables 1.2.1. Errors in Input 1.2.2. Aborting Calculations 1.3. Vectors and Matrices 1.3.1. Vectors 1.3.2. Matrices 1.3.3. Complex Number 1.3.4. Suppression of Screen Output 1.4. Numerical Expressions 1.5. Managing Variables 1.5.1. clear Command 1.5.2. Computational Limitations and Constants 1.5.3. "whos" Command 1.6. Symbolic Operations 1.6.1. Creation of Symbolic Variables 1.6.2. Substitution in Symbolic Equations 1.7. Code Files 1.7.1. Script Code Files 1.7.2. Adding Comments 1.7.3. Function Code Files 1.8. Functions 1.8.1. Built-In Functions 1.8.2. User-Defined Functions 1.9. Loops 1.9.1. If Statement 1.9.2. For Loop 1.10. Graphics 1.10.1. Plotting with ezplot 1.10.2. Modifying Graphs 1.10.3. Graphing with plot 1.10.4. Plotting Multiple Curves 1.10.5. Three-Dimensional Plots 1.11. Ordinary Differential Equations 1.12. Code File Examples 1.12.1. Population Growth Model 1.12.2. Random Fibonacci Sequence 1.12.3. Generation of a 3D Object 1.13. Simulink® 1.13.1. Simulink Blocks 1.13.2. Creation of a Simple Simulink Model Bibliography 2. Numerical Methods with MATLABⓇ 2.1. Linear Systems 2.1.1. Gauss Elimination Method 2.1.2. Gauss-Seidel Method 2.1.3. Conjugate Gradient Method 2.1.4. Use of MATLAB Built-In Functions 2.2. Nonlinear Equations 2.2.1. Polynomial Equations 2.2.2. Zeros of Nonlinear Equations 2.2.2.1. Bisection Method 2.2.2.2. False Position Method 2.2.2.3. Newton-Raphson Method 2.2.2.4. Secant Method 2.2.2.5. Muller Method 2.2.3. Solution of Nonlinear Equations of Several Variables 2.2.3.1. Newton-Raphson Method 2.2.3.2. Secant Method 2.2.3.3. Fixed-Point Iteration Method for Nonlinear Systems 2.2.4. Use of MATLAB Built-In Functions 2.3. Regression Analysis 2.3.1. Introduction to Statistics 2.3.1.1. Elementary Statistics 2.3.1.2. Probability Distribution 2.3.2. Generation of Random Numbers 2.3.3. Linear Regression Analysis 2.3.4. Polynomial Regression Analysis 2.3.4.1. Data Fitting by Least-Squares Method 2.3.4.2. Use of MATLAB Built-In Functions 2.3.5. Transformation of Nonlinear Functions to Linear Functions 2.4. Interpolation 2.4.1. Polynomial Interpolation 2.4.2. Lagrange Method 2.4.3. Newton Method 2.4.4. Cubic Splines 2.4.5. Use of MATLAB Built-In Functions 2.4.5.1. Polynomial and Cubic Spline Regression 2.4.5.2. Interpolation in One Dimension 2.4.5.3. Interpolation in Multiple Dimensions 2.5. Differentiation and Integration 2.5.1. Differentiation 2.5.2. Integration 2.5.2.1. Definite Integrals 2.5.2.2. Multiple Integrals 2.6. Ordinary Differential Equations 2.6.1. Initial-Value Problems 2.6.1.1. Explicit Euler Method 2.6.1.2. Implicit Euler Method 2.6.1.3. Heun Method 2.6.1.4. Runge-Kutta Methods 2.6.1.5. nth-Order ODE 2.6.1.6. Use of MATLAB Built-In Functions 2.6.2. Boundary-Value Problems 2.6.3. Differential Algebraic Equations (DAEs) 2.7. Partial Differential Equations 2.7.1. Classification of Partial Differential Equations 2.7.1.1. Classification by Order 2.7.1.2. Classification by Linearity 2.7.1.3. Classification of Linear 2nd-Order Partial Differential Equations 2.7.1.4. Classification by Initial and Boundary Conditions 2.7.2. Solution of Partial Differential Equations by Finite Difference Methods 2.7.2.1. Parabolic PDE 2.7.2.2. Hyperbolic PDE 2.7.2.3. Elliptic PDE 2.7.3. Method of Lines 2.7.4. Use of the MATLAB Built-In Function pdepe 2.8. Historical Development of Process Engineering Software Problems Linear Systems Nonlinear Equations Regression Analysis Interpolation Differentiation and Integration Ordinary Differential Equations Partial Differential Equations References 3. Physical Properties 3.1. Water and Steam 3.1.1. Division of Pressure-Temperature Range 3.1.2. Property Equations 3.1.2.1. Parameters and Auxiliary Equations 3.1.2.2. Basic Equation for Region 1 3.1.2.3. Basic Equation for Region 2 3.1.2.4. Basic Equation for Region 3 3.1.2.5. Basic Equation for Region 4 3.1.2.6. Basic Equations for Region 5 3.1.3. Properties of Saturated Steam 3.1.4. Calculation of H2O Properties by MATLAB Programs 3.1.4.1. Properties of H2O 3.1.4.2. Properties of Saturated H2O 3.2. Humidity 3.2.1. Relative Humidity 3.2.2. Absolute Humidity 3.3. Density of Saturated Liquids 3.3.1. Yaws Correlation 3.3.2. COSTALD Method 3.3.3. Gunn-Yamada Method7 3.4. Viscosity 3.4.1. Viscosity of Liquids 3.4.2. Viscosity of Gases 3.5. Heat Capacity 3.5.1. Heat Capacity of Liquids 3.5.1.1. Polynomial Correlation 3.5.1.2. Rowlinson-Bondi Method 3.5.2. Heat Capacity of Gases 3.6. Thermal Conductivity 3.6.1. Thermal Conductivity of Liquids 3.6.2. Thermal Conductivity of Gases 3.7. Surface Tension 3.7.1. Surface Tension of Liquids 3.7.2. Surface Tension by Correlations 3.8. Vapor Pressure 3.8.1. Antoine Equation 3.8.2. Extended Antoine Equation 3.8.3. Wagner Equation 3.8.4. Hoffmann-Florin Equation 3.8.5. Rarey-Moller Equation 3.8.6. Vapor Pressure Estimation by Correlations 3.9. Enthalpy of Vaporization 3.9.1. Watson Equation 3.9.2. Pitzer Correlation 3.9.3. Clausius-Clapeyron Equation 3.10. Heat of Formation for Ideal Gases 3.11. Gibbs Free Energy 3.12. Diffusion Coefficients 3.12.1. Liquid-Phase Diffusion Coefficients 3.12.2. Gas-Phase Diffusion Coefficients 3.13. Compressibility Factor of Natural Gases Problems References 4. Thermodynamics 4.1. Equation of State 4.1.1. Virial State Equation 4.1.2. Lee-Kesler Equation 4.1.3. Cubic Equations of State 4.1.4. Thermodynamic State Models 4.2. Thermodynamic Properties of Fluids 4.2.1. Enthalpy Change 4.2.2. Departure Function 4.2.2.1. Departure Function from the Virial Equation of State 4.2.2.2. Departure Function from the VDW (van der Waals) Equation of State 4.2.2.3. Departure Function from the RK (Redlich-Kwong) Equation of State 4.2.2.4. Departure Function from the SRK (Soave-Redlich-Kwong) Equation of State 4.2.2.5. Departure Function from the PR (Peng-Robinson) Equation of State 4.2.3. Enthalpy of Mixture 4.3. Fugacity Coefficient 4.3.1. Fugacity Coefficients of Pure Species 4.3.2. Fugacity Coefficient of a Species in a Mixture 4.3.2.1. Fugacity Coefficient from the Virial Equation of State 4.3.2.2. Fugacity Coefficient from the Cubic Equations of State 4.3.2.3. Fugacity Coefficient from the van der Waals Equation of State 4.4. Activity Coefficient 4.4.1. Activity Coefficient Models 4.4.1.1. Wilson equation 4.4.1.2. van Laar equation 4.4.2. Activity Coefficients by the Group Contribution Method 4.4.2.1. UNIQUAC Method 4.4.2.2. UNIFAC Method 4.5. Vapor-Liquid Equilibrium 4.5.1. Vapor-Liquid Equilibrium by Raoult's Law 4.5.2. Vapor-Liquid Equilibrium by Modified Raoult's Law 4.5.2.1. Dew Point and Bubble Point Calculations 4.5.2.2. Flash Calculation by the Modified Raoult's Law 4.5.3. Vapor-Liquid Equilibrium Using Ratio of Fugacity Coefficients 4.5.3.1. Dew Point and Bubble Point Calculations38 4.5.3.2. Flash Calculations Using Fugacity Coefficients 4.6. Vapor-Liquid-Liquid Equilibrium Problems References 5. Fluid Mechanics 5.1. Laminar Flow 5.1.1. Reynolds Number 5.1.2. Flow in a Horizontal Pipe 5.1.3. Laminar Flow in a Horizontal Annulus 5.1.4. Vertical Laminar Flow of a Falling Film 5.1.5. Falling Particles 5.2. Friction Factor 5.3. Flow of Fluids in Pipes 5.3.1. Friction Loss 5.3.2. Equivalent Length of Various Fittings and Valves 5.3.3. Excess Head Loss 5.3.4. Pipe Reduction and Enlargement 5.3.5. Overall Pressure Drop 5.3.6. Pipeline Network 5.4. Flow through a Tank 5.4.1. Open Tank 5.4.2. Enclosed Tank 5.5. Flow Measurement: Orifice and Venturi Meter 5.6. Flow of Non-Newtonian Fluids 5.6.1. Velocity Profile 5.6.2. Reynolds Number 5.6.3. Friction Factor 5.7. Compressible Fluid Flow in Pipes 5.7.1. Critical Flow and the Mach Number 5.7.2. Compressible Isothermal Flow 5.7.3. Choked Flow 5.8. Two-Phase Flow in Pipes 5.8.1. Flow Patterns 5.8.2. Pressure Drop 5.8.3. Corrosion and Erosion 5.8.4. Vapor-Liquid Two-Phase Vertical Downflow 5.8.5. Pressure Drop in Flashing Steam Condensate Flow 5.9. Flow through Packed Beds Problems References 6. Chemical Reaction Engineering 6.1. Characteristics of Reaction Rates 6.1.1. Estimation of Reaction Rate Constant and Reaction Order 6.1.2. Reaction Equilibrium 6.1.3. Reaction Conversion 6.1.4. Series Reactions 6.2. Continuous-Stirred Tank Reactors (CSTRs) 6.2.1. Concentration Changes with Time 6.2.2. Nonisothermal Reaction 6.2.3. Multiple Reactions in a CSTR 6.3. Batch Reactors 6.3.1. Estimation of Batch Reaction Parameters 6.3.2. Semibatch Reactors 6.4. Plug-Flow Reactors 6.4.1. Isothermal Plug-Flow Reactor 6.4.2. Nonisothermal Plug-Flow Reactor 6.4.3. Adiabatic Reaction in a Plug-Flow Reactor 6.5. Catalytic Reactors 6.5.1. Characteristics of Catalytic Reaction 6.5.2. Diffusion and Reaction in a Catalyst Pellet 6.5.3. Catalytic Reactions in a Packed-Bed Reactor 6.5.4. Packed-Bed Reactor with Axial Mixing 6.5.5. Oxidation of SO2 in a Packed-Bed Reactor 6.5.6. Straight-Through Transport Reactor 6.5.7. Steady-State Nonisothermal Reactions 6.6. Cracking and Polymerization 6.6.1. Cracking Reaction 6.6.2. Polymerization of Methyl Methacrylate (MMA) 6.7. Microreactors 6.8. Membrane Reactors 6.9. Biochemical Reaction: Cell Growth Models Problems References 7. Mass Transfer 7.1. Diffusion 7.1.1. One-Dimensional Diffusion 7.1.2. Multi-Component Diffusion in Gases 7.1.3. Diffusion from a Sphere 7.1.4. Mass Transfer Coefficient 7.1.5. Diffusion in Isothermal Catalyst Particles 7.1.6. Unsteady-State Diffusion in a One-Dimensional Slab 7.1.7. Diffusion in a Falling Laminar Film 7.2. Evaporation 7.2.1. Single-Effect Evaporators 7.2.2. Vaporizers 7.2.3. Multiple-Effect Evaporators 7.3. Absorption 7.3.1. Absorption by Tray Column 7.3.2. Momentum and Mass Transfer in the Absorption Column 7.3.3. Packed-Bed Absorber 7.3.3.1. Packed-Bed Column Diameter 7.3.3.2. Packed-Bed Column Height 7.4. Binary Distillation 7.4.1. McCabe-Thiele Method 7.4.2. Ideal Binary Distillation 7.5. Multi-Component Distillation: Shortcut Calculation 7.5.1. Fenske-Underwood-Gilliland Method 7.5.1.1. Fenske Equation: The Minimum Number of Stages 7.5.1.2. Underwood Equation: The Minimum Reflux 7.5.1.3. Gilliland's Correlation 7.5.1.4. Feed Stage Location 7.5.1.5. Determination of the Number of Stages by the Smoker Equation 7.6. Rigorous Steady-State Distillation Calculations 7.6.1. Equilibrium Stage 7.6.2. Rigorous Distillation Model: MESH Equations 7.6.3. Tridiagonal Matrix Method 7.6.4. Bubble Point (BP) Method 7.7. Differential Distillation 7.8. Filtration 7.9. Membrane Separation 7.9.1. Complete-Mixing Model for Gas Separation 7.9.2. Cross-Flow Model for Gas Separation Problems References 8. Heat Transfer 8.1. One-Dimensional Heat Transfer 8.1.1. Heat Transfer in a One-Dimensional Slab 8.1.2. Heat Transfer through Multilayers of Slabs and Cylinders 8.1.3. Heat Transfer in a Wire 8.1.4. Heat Loss through Pipe Flanges 8.1.5. Heat Transfer in a Laminar Flow through a Cylinder 8.2. Multidimensional Heat Conduction 8.2.1. Unsteady-State Heat Conduction 8.2.2. Method of Lines 8.2.3. Steady-State Heat Conduction 8.3. Heat Exchangers 8.3.1. Log-Mean Temperature Difference 8.3.2. Simplified Heat Exchanger Calculation, 8.3.2.1. Heat Duty 8.3.2.2. Overall Heat Transfer Coefficient 8.3.2.3. Tube-Side Heat Transfer Coefficient 8.3.2.4. Shell-Side Heat Transfer Coefficient 8.3.2.5. Pressure Drop in the Tube Side 8.3.2.6. Pressure Drop in the Shell Side 8.3.3. Rigorous Heat Exchanger Calculation 8.3.3.1. Tube-Side Heat Transfer Coefficient 8.3.3.2. Shell-Side Heat Transfer Coefficient 8.3.3.3. Pressure Drop in the Tube Side 8.3.3.4. Pressure Drop in the Shell Side 8.3.3.5. Heat Exchanger Calculation Procedure 8.3.4. Double-Pipe Heat Exchanger Problems References 9. Process Control 9.1. Laplace Transform and Transfer Function 9.1.1. Laplace Transform and Inverse Laplace Transform 9.1.2. Partial Fraction Expansion 9.1.3. Representation of the Transfer Function 9.2. Block Diagrams 9.3. State-Space Representation 9.4. Process Dynamics 9.4.1. Dynamics of 1st-Order Processes 9.4.2. Dynamics of 2nd-Order Processes 9.4.3. Dynamics of Complex Processes 9.4.3.1. Higher-Order Processes 9.4.3.2. Lead/Lag 9.4.3.3. Time Delay 9.5. Dynamics of Feedback Control Loops 9.5.1. Simple Feedback Control Loops 9.5.1.1. Servo Problem 9.5.1.2. Regulator Problem 9.5.2. Control of a Continuous-Stirred Tank Heater 9.6. Stability of Feedback Control Systems 9.7. Frequency Response Analysis 9.7.1. Bode Diagram 9.7.2. Nyquist Diagram 9.7.3. Nichols Chart 9.7.4. Gain and Phase Margins Problems References 10. Optimization 10.1. Unconstrained Optimization 10.1.1. Fibonacci Method 10.1.2. Golden Section Method 10.1.3. Brent's Quadratic Fit Method 10.1.4. Shubert-Piyavskii Method 10.1.5. Steepest Descent Method 10.1.6. Newton's Method 10.1.7. Conjugate Gradient Method 10.1.8. Quasi-Newton Method 10.2. Linear Programming 10.2.1. Formulation of Linear Programming Problems 10.2.2. Simplex Method 10.2.3. Two-Phase Simplex Method 10.2.4. Interior Point Method 10.3. Constrained Optimization 10.3.1. Rosen's Gradient Projection Method 10.3.2. Zoutendijk's Feasible Direction Method 10.3.3. Generalized Reduced Gradient (GRG) Method 10.3.4. Sequential Quadratic Programming (SQP) Method 10.4 Direct Search Methods 10.4.1. Cyclic Coordinate Method 10.4.2. Hooke-Jeeves Pattern Search Method 10.4.3. Rosenbrock's Method 10.4.4. Nelder-Mead's Simplex Method 10.4.5. Simulated Annealing (SA) Method 10.4.6. Genetic Algorithm (GA) 10.5. Mixed-Integer Programming 10.5.1. Zero-One Programming Method 10.5.2 Branch-and-Bound Method 10.6. Use of MATLAB Built-In Functions 10.6.1. Unconstrained Optimization 10.6.1.1. fminsearch 10.6.1.2. fminunc 10.6.1.3. fminbnd 10.6.1.4. lsqnonlin 10.6.2. Constrained Optimization 10.6.2.1. lsqlin 10.6.2.2. fmincon 10.6.2.3. fminimax 10.6.2.4. quadprog 10.6.3. Linear and Mixed-Integer Programming Problems 10.6.3.1. linprog 10.6.3.2. intlinprog Problems References 11. Computational Intelligence 11.1. Fuzzy Systems 11.1.1. Membership Functions 11.1.2. Fuzzy Arithmetic Operations 11.1.3. Defuzzification 11.1.4. Fuzzy Inference Systems 11.1.4.1. Mamdani Fuzz Inference System (FIS) Objects 11.1.4.2. Creation of an FIS Object Using the mamfis Function 11.1.4.3. Creation of an FIS Object Using the genfis Function 11.1.4.4. Creation of an FIS Object Using Fuzzy Logic Designer 11.2. Artificial Neural Networks 11.2.1. Neural Network Models 11.2.2. Function Fitting Neural Networks 11.2.2.1. Construction and Training of a Function Fitting Network 11.2.2.2. Creation and Training of a Feed-forward Network 11.2.2.3. Creation and Training of a Cascade Network 11.2.3. Regression Fitting 11.2.3.1. Regression Models 11.2.3.2. Data Fitting 11.3. Support Vector Machines 11.3.1. Fundamentals of Support Vector Machines 11.3.2. Creation of Regression Models Using fitrsvm 11.3.3. Creation of Regression Models Using fitrlinear Problems References Index