دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 2
نویسندگان: Yolanda Pico (editor)
سری:
ISBN (شابک) : 0128132663, 9780128132661
ناشر: Academic Press
سال نشر: 2020
تعداد صفحات: 884
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 27 مگابایت
در صورت تبدیل فایل کتاب Chemical Analysis of Food: Techniques and Applications به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب تجزیه و تحلیل شیمیایی مواد غذایی: تکنیک ها و کاربردها نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
تحلیل شیمیایی غذا: تکنیک ها و کاربردها، ویرایش دوم، آخرین فن آوری ها و چالش ها را در تمام مراحل تجزیه و تحلیل مواد غذایی، از انتخاب رویکرد مناسب، نحوه انجام روش های تحلیلی، و نحوه انجام آن بررسی می کند. اندازه گیری و گزارش نتایج این کتاب در دو بخش ساختار یافته است: بخش اول نقش آخرین پیشرفتها در تکنیکهای تحلیلی و زیست تحلیلی را شرح میدهد و بخش دوم به بررسی کاربردها و مسائل نوآورانه در تجزیه و تحلیل غذا میپردازد. تکنیکهای مورد بحث از روشهای غیرتهاجمی و غیرمخرب مانند طیفسنجی مادون قرمز و اولتراسوند تا حوزههای نوظهور مانند فناوری نانو، حسگرهای زیستی و بینیها و زبانهای الکترونیکی را شامل میشود.
این نسخه کاملاً به روز شده شامل فصول جدیدی در مورد طیف سنجی جرمی محیط، تکنیک های تصویربرداری، رویکردهای omics در تجزیه و تحلیل مواد غذایی، تجزیه و تحلیل سموم طبیعی، مواد تماس با غذا، نانومواد و غذاهای ارگانیک است. همه فصلها بهروزرسانی یا بازنویسی میشوند تا محتوا کاملاً بهروز شود.
Chemical Analysis of Food: Techniques and Applications, Second Edition, reviews the latest technologies and challenges in all stages of food analysis, from selecting the right approach, how to perform analytic procedures, and how to measure and report the results. The book is structured in two parts: the first describes the role of the latest developments in analytical and bio-analytical techniques, with the second reviewing innovative applications and issues in food analysis. The techniques discussed range from the non-invasive and non-destructive, such as infrared spectroscopy and ultrasound, to newly emerging areas, such as nanotechnology, biosensors and electronic noses and tongues.
This thoroughly updated edition includes new chapters on ambient mass spectrometry, imaging techniques, omics approaches in food analysis, natural toxins analysis, food contact materials, nanomaterials and organic foods. All chapters are updated or rewritten to bring the content completely up-to-date.
1 - Basics and advances in sampling and sample preparation 1 - Introduction 2 - Types of samples and the analytical procedure 3 - Trends in sample preparation for food analysis 3.1 - From volatile organic solvents to ionic liquids and (natural) deep eutectic solvents 3.2 - Use of deep eutectic and natural deep eutectic solvents in the food field 4 - Conclusions Acknowledgments References 2 - Chemometrics: multivariate analysis of chemical data 1 - Introduction 1.1 - From data to information 2 - From univariate to multivariate 2.1 - Histograms 2.2 - Normality tests 2.3 - ANOVA 2.4 - Radar charts 3 - Multivariate data analysis 3.1 - Principal component analysis 3.2 - Exploratory analysis of multidimensional data arrays 3.3 - Signal preprocessing 3.3.1 - Standard normal variate transform (SNV) 3.3.2 - Derivatives 3.3.3 - Horizontal alignment 3.4 - Supervised data analysis and validation 3.4.1 - Single evaluation set 3.4.2 - Cross-validation (CV) 3.4.3 - Repeated evaluation set 3.5 - Supervised qualitative modeling 3.5.1 - Classification and class-modeling 3.5.2 - Evaluation parameters 3.5.3 - Distance-based techniques 3.5.3.1 - k nearest neighbors (k-NN) 3.5.3.2 - A nonparametric class-modeling technique 3.5.3.3 - Soft independent modeling of class analogy (SIMCA) 3.5.4 - Probabilistic techniques 3.5.4.1 - Linear discriminant analysis 3.5.4.2 - Quadratic discriminant analysis 3.5.4.3 - Unequal class models 3.5.4.4 - Potential functions methods 3.6 - Supervised quantitative modeling 3.6.1 - Ordinary least squares 3.6.2 - Principal component regression 3.6.3 - Partial least squares 3.7 - Artificial neural networks 4 - Current trends and applications Acknowledgments References 3 - Near-infrared, mid-infrared, and Raman spectroscopy 1 - Introduction 2 - Theory 3 - Instrumentation 3.1 - Near-infrared spectrometers 3.2 - Mid-infrared spectrometer 3.2.1 - Dispersive spectrometers 3.2.2 - Fourier transform spectrometers 3.3 - Raman spectrometers 4 - Sample presentation 4.1 - Near-infrared sample accessories 4.2 - Mid-infrared sample accessories 4.3 - Raman sample accessories 5 - New generation of spectrometers 5.1 - Online systems 5.2 - Mapping and imaging systems 5.3 - Hyphenated techniques 5.4 - Advantages and limitations of spectroscopic techniques 6 - Chemometric approach 7 - Applications in food analysis 7.1 - Geographic origin 7.1.1 - MIR spectroscopy for the geographic authentication of wines 7.1.2 - NIR spectroscopy for the geographic authentication of olive oil 7.1.3 - FT-Raman spectroscopy for the geographic authentication of honey 7.1.4 - Spectroscopic methods for the geographic authentication of cheese 7.2 - Species discrimination 7.2.1 - FT-MIR spectroscopy for the discrimination of meat products 7.2.2 - NIR spectroscopy for the discrimination of botanical honey origin 7.2.3 - Raman spectroscopy for the discrimination of green coffee varieties 7.2.4 - Spectroscopic methods for the discrimination of phenolic compounds 7.3 - Detection of adulteration 7.3.1 - FT-MIR spectroscopy for the detection of adulteration of herbs and spices 7.3.2 - FT-NIR spectroscopy for the detection of adulteration of milk powder 7.3.3 - FT-Raman spectroscopy for the detection of adulteration of honey 7.3.4 - Spectroscopic methods for the detection of adulteration of vegetable oils 7.4 - Detection of contamination 7.4.1 - MIR spectroscopy for the detection of wheat contamination 7.4.2 - NIR spectroscopy for the detection of rice contamination 7.4.3 - FT-Raman spectroscopy for the detection of food contamination 7.4.4 - Spectroscopic methods for the detection and identification of biofilms 7.5 - Process control 7.5.1 - FT-NIR spectroscopy to control meat composition 7.5.2 - Raman spectroscopy to control chocolate bloom 7.5.3 - Spectroscopic methods to control oil properties 7.5.4 - Spectroscopic methods to monitor wine fermentation 7.6 - Physicochemical properties 7.6.1 - FT-MIR spectroscopy for the determination of peroxide value of vegetable oils 7.6.2 - NIR spectroscopy to estimate the antioxidant capacity 7.6.3 - FT-Raman for the determination of honey composition 7.6.4 - Spectroscopic methods for the determination of alcohol content in alcohol beverages 7.7 - Food quality 7.7.1 - FT-MIR spectroscopy for the determination of quality parameters of beers 7.7.2 - NIR spectroscopy for the analysis of white pudding 7.7.3 - Raman spectroscopy for analysis of fish 7.7.4 - Spectroscopic methods for analysis of milk fat 7.7.5 - IS–NIR spectroscopy for quality evaluation of fruits, the case of apples 7.7.6 - Development of handheld spectrometers for fruit analysis 8 - Conclusion References 4 - Nuclear magnetic resonance 1 - Introduction 2 - Specialties of NMR spectroscopy 2.1 - One-dimensional high-resolution liquid state NMR (1D HR-NMR) 2.2 - Site-specific natural isotope fractionation by NMR (SNIF-NMR) 2.3 - Two-dimensional NMR spectroscopy (2D NMR) 2.4 - Solid state NMR spectroscopy 2.5 - Magnetic resonance imaging (MRI) 2.6 - Low-field NMR: relaxometry, diffusometry and spectroscopy 3 - Recent advances in NMR spectroscopy 3.1 - High-resolution liquid state NMR 3.2 - High-resolution solid-state NMR spectroscopy 3.3 - Low-field NMR: relaxometry, diffusometry and spectroscopy 4 - Selected applications 4.1 - High-resolution liquid state NMR 4.2 - Solid-state NMR 4.2.1 - CPMAS 4.2.2 - HRMAS 4.3 - Magnetic resonance imaging 4.4 - Low-field NMR: diffusometry, relaxometry, spectroscopy 5 - Concluding remarks References 5 - Recent trends in molecular techniques for food pathogen detection 1 - Introduction 2 - Nucleic acids: the backbone of all molecular techniques 2.1 - RNA 2.2 - DNA 3 - Recent molecular techniques for detection of food borne pathogen 3.1 - Polymerase chain reaction 3.2 - Nested PCR 3.3 - Multiplex PCR 3.4 - Reverse transcription (rt) PCR 3.5 - Real-time (RT) PCR 3.6 - Digital PCR (dPCR) 4 - Advanced molecular techniques for detection of foodborne pathogens 4.1 - Loop-mediated isothermal amplification 4.1.1 - Primers for LAMP 4.1.2 - Steps of LAMP process 4.1.3 - Visualization of LAMP amplification products 4.2 - Nucleic acid sequence-based amplification 4.3 - OVATION amplification 4.4 - Multilocus sequence typing 4.5 - Ligase chain reaction 4.6 - Microarrays 5 - Genotyping methods for detection of foodborne pathogens 5.1 - Pulse field gel electrophoresis 5.2 - Rapid amplified polymorphic DNA 5.3 - Restriction fragment length polymorphism 5.4 - Amplified fragment length polymorphism 5.5 - Ribotyping 5.6 - Denaturing gradient gel electrophoresis 6 - DNA sequencing methods for detection of foodborne pathogens 6.1 - DNA sequencing: technology 6.1.1 - First-generation sequencing methods 6.1.1.1 - Maxam–Gilbert sequencing 6.1.1.2 - Sanger sequencing 6.1.2 - Next-generation sequencing 6.1.2.1 - Roche 454 6.1.2.2 - Illumina SBS 6.1.2.3 - SOLiD sequencing 6.1.2.4 - Ion PGM sequencing 6.1.2.5 - Pacific biosciences SMRT sequencing 6.1.2.6 - Oxford nanopore sequencing 6.2 - DNA sequencing: application in foodborne-pathogen identification approaches 6.2.1 - Whole genome sequencing 6.2.2 Whole metagenomic sequencing (WMS) 6.3 - Challenges with NGS methods 7 - Molecular techniques for GMOs and transgenic food 7.1 - Existing regulatory laws for GM foods available in market 7.2 - Reference materials, laboratory testing, and method validation for detection of GMOs 7.3 - Categories of molecular detection techniques for GMOs or transgenic food 7.3.1 - Category I: “Screening Target” specific 7.3.2 - Category II: “Gene” specific 7.3.3 - Category III: “Construct” specific 7.3.4 - Category IV: “Event” specific 7.4 - Southern blotting 7.5 - PCR 7.5.1 - Competitive PCR 7.5.2 - Quantitative or real-time PCR 7.5.3 - Multiplex PCR 7.5.4 - New PCR-based methods for GMO 7.6 - Array-based methods 7.7 - Toxicological analysis 7.8 - Next-generation sequencing 8 - Future prospects Acknowledgments Declaration of Competing Interest References 6 - Microfluidic devices: biosensors 1 - Introduction 2 - Biosensors classes and fundamentals 2.1 - Biological recognition elements 2.1.1 - Enzymes 2.1.2 - Immunosensors 2.1.3 - Nucleic acids 2.1.4 - Bacteriophages 2.1.5 - Whole cell biosensors 2.2 - Transduction elements 2.2.1 - Electrochemical transduction 2.2.2 - Optical transduction 2.2.3 - Chemiluminescence and bioluminescence 2.2.4 - Mass sensitive sensors 3 - Nanobiosensors, microfluidics, and lab-on-a-chip 3.1 - Label-based methods 3.2 - Label-free detection methods 3.3 - Micro/nanofluidics integrated with nanobiosensors 4 - Application of new biosensing technologies for food safety 4.1 - Pesticide residues 4.2 - Veterinary drugs and growth promoting agents 4.3 - Pathogenic bacteria and natural toxins 4.4 - Natural toxins 5 - Commercial instrumentation and future perspectives Acknowledgment References 7 - Electronic noses and tongues 1 - Background 2 - Electronic nose (E-nose) 3 - Electronic tongue (E-tongue) 4 - Treatment of data 5 - Application of E-nose and E-tongue 5.1 - Meat and fish 5.2 - Dairy products 5.3 - Honey 5.4 - Eggs 5.5 - Fruit and vegetables 5.6 - Beverages 6 - Conclusions and future trends References 8 - Liquid chromatography in food analysis 1 - Introduction 2 - Liquid chromatography–mass spectrometry in food analysis (target and nontarget compound screening) 2.1 - Natural compounds 2.1.1 - Vitamins 2.1.2 - Flavonoids 2.1.3 - Lipids 2.1.4 - Carbohydrates 2.2 - Food Additives 2.2.1 - Preservative 2.2.2 - Artificial sweeteners 2.2.3 - Food coloring 2.3 - Contaminants 2.3.1 - Pesticides 2.3.2 - Carcinogens and natural toxins 2.3.3 - Veterinary and human drugs 3 - Trends in application of liquid chromatography in food analysis 3.1 - Ultra-high-performance liquid chromatography 3.2 - Monolithic column 3.3 - Fused-core particle packed columns 4 - Conclusion and future perspectives References 9 - Gas chromatography 1 - Introduction 2 - Advances in column technology 3 - New generations of stationary phases 3.1 - Ionic liquid’s stationary phases 3.2 - Water compatible stationary phases 4 - Multidimensional gas chromatographic platforms 4.1 - LC–GC systems instrumental configurations 4.2 - LC–GC application to mineral oil contamination assessment 5 - Comprehensive two-dimensional gas chromatography 5.1 - Improving GC × GC separation power and resolution 5.2 - Improving GC × GC identification reliability by structured pattern separations 5.3 - Benefits and flexibility of thermal modulation 5.4 - Potentials of differential-flow modulation for high-throughput profiling and fingerprinting 6 - Mass spectrometry and its fundamental role for confident characterization of complex samples References 10 - Electrophoresis 1 - Introduction 2 - Separation modes 2.1 - Capillary zone electrophoresis (CZE) 2.2 - Micellar electrokinetic chromatography (MEKC) 2.3 - Capillary electrochromatography (CEC) 2.4 - Capillary gel electrophoresis (CGE) 2.5 - Capillary isotachophoresis (CITP) 2.6 - Capillary isoelectric focusing (CIEF) 3 - Detectors and detection modes in capillary electrophoresis 3.1 - Optical detectors 3.1.1 - UV-vis detection 3.1.2 - Fluorescence 3.1.3 - Indirect detection 3.2 - Capacitively coupled contactless conductivity detection 3.3 - Mass spectrometry 4 - Sample preparation in capillary electrophoresis 5 - Conclusions and future trends References 11 - Mass spectrometry: principles and instrumentation 1 - Introduction to mass spectrometry 1.1 - Ionization methods 1.2 - Mass analyzers 1.2.1 - Quadrupole 1.2.2 - Ion trap 1.2.3 - Time of flight 1.2.4 - Orbitrap-MS and FT-ICR-MS 1.3 - Tandem mass spectrometry 2 - Real-time analysis mass spectrometry 2.1 - DART/DESI source 2.2 - PTR-MS/SIFT-MS 3 - Isotope ratio mass spectrometry 4 - Hyphenated technologies 4.1 - Gas chromatography mass spectrometry in food analysis 4.2 - Liquid chromatography–tandem mass spectrometry in food analysis 4.3 - Gas and liquid chromatography–isotope ratio mass spectrometry in food analysis 5 - Nontargeted analysis: metabolomics analysis 5.1 - MS-based metabolomics studies in food sciences 6 - Conclusions and perspectives Acknowledgment References 12 - Applications of imaging techniques in food science 1 - Spectral imaging 1.1 - Applications in food science 1.1.1 - Assessment of food quality parameters 1.1.2 - Determination of toxic contamination 1.1.3 - Variety discrimination 2 - Magnetic resonance imaging 2.1 - Principle of MRI 2.2 - Application of MRI 2.2.1 - Salt and water distribution during food processing 2.2.1.1 - Freezing studies 3 - Soft X-ray imaging 3.1 - Principle of soft X-ray 3.2 - Application of soft X-ray 3.2.1 - X-ray imaging of infective damage in fruits 3.2.2 - Imaging of microstructure of food product 4 - Mass spectrometry imaging 4.1 - Principle of MS imaging 4.2 - Application of MS imaging 4.2.1 - Gamma-aminobutyric acid (GABA) distribution in eggplant sections 4.2.2 - Highly detailed distribution of lysophosphatidylcholine in rice seeds 4.2.3 - Automatic matrix application enhanced ionization efficiency of food metabolites 5 - Fluorescence imaging 5.1 - Principle of HSFI 5.2 - Applications of HSFI 5.2.1 - Contamination of foods and agricultural products 5.2.2 - Quality inspection of agricultural products 6 - Ultrasound imaging 6.1 - Principle of UI 6.2 - Applications of UI 6.2.1 - Detection of foreign materials in agricultural products 6.2.2 - Estimation of body composition of meat and fish 7 - Conclusions and future trends References 13 - Food authenticity and fraud 1 - Introduction 2 - Methods for food authentication and adulteration 2.1 - Chromatographic techniques 2.1.1 - Gas chromatography 2.1.2 - High-performance liquid chromatography 2.2 - Spectroscopic techniques 2.2.1 - Ultraviolet–visible spectrometry 2.2.2 - Fluorescence spectroscopy 2.2.3 - Infrared spectroscopy 2.2.4 - Electronic nose 2.2.5 - Nuclear magnetic resonance spectroscopy 2.2.6 - Stable isotope analysis 2.3 - Enzymes in food authentication 2.4 - DNA-based methods in food authentication 2.5 - Differential scanning calorimetry 3 - Conclusions References 14 - Biologically active and health promoting food components of nuts, oilseeds, fruits, vegetables, cereals, and legumes 1 - Nuts and oilseeds 1.1 - Phytosterols 1.2 - Fatty acids 2 - Fruits and vegetables 2.1 - Polyphenols 2.2 - Carotenoids 2.3 - Glucosinolates 3 - Cereals and legumes 3.1 - Dietary fiber 3.2 - Isoflavones 3.3 - Lignans Acknowledgments References 15 - Foodomics evaluation of genetically modified organisms 1 - Introduction 2 - Controversial issues and legislation on GMOs 3 - Strategies used for the analysis of GMOs 3.1 - Target-based strategies 3.1.1 - Screening methods for GMOs detection in food 3.1.2 - Quantification of GMOs in food 3.2 - Profiling and untargeted strategies 3.2.1 - Transcriptomics 3.2.2 - Proteomics 3.2.3 - Metabolomics 4 - Conclusions and future outlooks Acknowledgments References 16 - Flavors and odors analysis 1 - Introduction 2 - Sample preparation for food flavor evaluation 3 - Advanced analytical techniques for food flavor and odor analysis 3.1 - Gas chromatography in food flavor research 3.2 - Gas chromatography coupled to mass spectrometry 3.3 - Gas chromatography olfactometry applied to odor evaluation 3.4 - Multidimensional gas chromatography 4 - Conclusions and future trends References 17 - Emerging contaminants and toxins 1 - Introduction 2 - The global scheme to analyze emerging contaminants 3 - New substances appearing as emerging contaminants 4 - Contaminants whose tested methodologies have improved 5 - Emerging concerns on well-known contaminants 6 - Conclusions Acknowledgments References 18 - Natural toxins analysis 1 - Introduction 2 - Characterization of filamentous fungi 3 - Mycotoxins—secondary fungal metabolites 4 - Masked mycotoxins 5 - The most popular mycotoxin identification techniques 5.1 - HPLC 5.2 - LC/MS/MS 5.3 - Others 6 - Conclusions References 19 - Advances in MS methods for food allergens detection 1 - Introduction 2 - MS methods for food allergens detection 2.1 - Top-down approach in the detection of food allergens 2.2 - Bottom-up approach in the detection of food allergens 2.2.1 - High resolution MS approaches 2.2.2 - Low resolution MS platforms 3 - Concluding remarks References 20 - Review on metal speciation and their applications since 2010 1 - Introduction 2 - Sample preparation for the speciation analysis 2.1 - Sample collection, storage, and pretreatment 2.2 - Extraction methods for the sample analysis 3 - Speciation analysis of metal ions 3.1 - Arsenic 3.2 - Antimony 3.3 - Cobalt 3.4 - Chromium 3.5 - Cadmium 3.6 - Iron 3.7 - Lead 3.8 - Mercury 3.9 - Manganese 3.10 - Selenium 3.11 - Tin 4 - Conclusions References