دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: نویسندگان: Kohji Mitsubayashi, Osamu Niwa, Yuko Ueno سری: ISBN (شابک) : 0128154098, 9780128154090 ناشر: Elsevier سال نشر: 2019 تعداد صفحات: 406 [408] زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 10 Mb
در صورت تبدیل فایل کتاب Chemical, Gas, and Biosensors for Internet of Things and Related Applications به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب حسگرهای شیمیایی، گازی و زیستی برای اینترنت اشیا و کاربردهای مرتبط نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
حسگرهای شیمیایی، گاز و زیستی برای اینترنت اشیا و برنامههای مرتبط زمینههای حسگرها و شیمی تحلیلی، دستگاهها و ماشینها، و شبکه و فناوری اطلاعات را گرد هم میآورد. این منبع کامل محققان را قادر می سازد تا به طور مؤثر برای پیشبرد این حوزه مطالعاتی بین رشته ای که به سرعت در حال گسترش است، همکاری کنند. از آنجایی که پیشرفتهای نوآورانه در اینترنت اشیا (IoT) همچنان فرصتهای جدیدی را برای بهبود کیفیت زندگی باز میکند، فناوری حسگر باید سرعت خود را حفظ کند. Mitsubayashi، Niwa و Ueno ذهن های برتر در زمینه های مربوطه خود را گرد هم آورده اند تا آخرین اطلاعات را در مورد کاربردهای متعدد این فناوری ارائه دهند.
موضوعات پوشش داده شده عبارتند از: سیستم های کمک به زندگی، نظارت بر شبکه با حسگرهای محیطی قابل حمل، نظارت بی سیم سلامت دام، نظارت بر سلامت نقطه مراقبت، الکترونیک ارگانیک و باتری های زیستی، و موارد دیگر.
Chemical, Gas, and Biosensors for the Internet of Things and Related Applications brings together the fields of sensors and analytical chemistry, devices and machines, and network and information technology. This thorough resource enables researchers to effectively collaborate to advance this rapidly expanding, interdisciplinary area of study. As innovative developments in the Internet of Things (IoT) continue to open new possibilities for quality of life improvement, sensor technology must keep pace, Drs. Mitsubayashi, Niwa and Ueno have brought together the top minds in their respective fields to provide the latest information on the numerous uses of this technology.
Topics covered include life-assist systems, network monitoring with portable environmental sensors, wireless livestock health monitoring, point-of-care health monitoring, organic electronics and bio-batteries, and more.
Front Cover Chemical, Gas, and Biosensors for Internet of Things and Related Applications Copyright Page Contents List of Contributors Preface I. Sensors and Devices for Internet of Things Applications 1 Portable urine glucose sensor 1.1 Introduction 1.2 Significance of urine glucose measurement 1.3 Operating principle of urine glucose sensor and laminated structure 1.3.1 Principle of operation 1.3.2 Laminated structure of urine glucose sensor 1.4 Development of portable urine glucose meter 1.4.1 Composition of urine glucose meter 1.4.2 Performance evaluation of urine glucose meter 1.5 Clinical application of urine glucose meter 1.5.1 Relationship between the amount of boiled rice and urine glucose concentration in impaired glucose tolerance 1.5.2 Results of urine glucose monitoring on impaired glucose tolerance case 1.5.3 Results of a case of self-monitoring of urine glucose in diabetes 1.6 Conclusions References 2 Design, application, and integration of paper-based sensors with the Internet of Things 2.1 Introduction 2.2 Bioapplications of paper-based analytical devices 2.3 Environmental analysis of paper-based analytical devices 2.4 Integration with smartphone devices 2.5 Conclusion Author disclosure statement References 3 Membrane-type Surface stress Sensor (MSS) for artificial olfactory system 3.1 Introduction 3.2 Membrane-type Surface stress Sensor (MSS) 3.3 Receptor materials 3.4 Machine learning 3.5 Applications 3.6 Internet of Things and MSS Alliance/Forum 3.7 Conclusion References 4 Sensing technology based on olfactory receptors 4.1 Olfactory mechanisms in biological systems 4.1.1 Olfactory mechanisms in vertebrates 4.1.1.1 Anatomy of olfactory organs in mammals 4.1.1.2 Odorant detection and signal transduction 4.1.1.3 Odorant receptors and odor coding in mammals 4.1.2 Olfactory mechanisms in insects 4.1.2.1 Anatomy of olfactory organs in insects 4.1.2.2 Odorant detection by olfactory sensilla 4.1.2.3 Odorant receptors and signal transduction 4.1.2.4 Odor coding by olfactory receptor neurons 4.2 Biosensing technologies based on odorant receptors 4.2.1 Mammalian odorant receptors 4.2.1.1 Cell-based expression systems 4.2.1.1.1 Bacterial cells 4.2.1.1.2 Yeast cells 4.2.1.1.3 Mammalian cultured cells 4.2.1.2 Other (noncell-based expression system) applications 4.2.2 Insect odorant receptors 4.2.2.1 Cell-based expression systems 4.2.2.2 Other (noncell expression system) applications 4.3 Summary References 5 Advanced surface modification technologies for biosensors 5.1 Biosensors and biointerfaces 5.2 Binding platforms based on self-assembled monolayers 5.2.1 Organosulfur derivatives 5.2.2 Organosilicon derivatives 5.2.3 Catechol derivatives 5.3 Binding matrix based on polymeric hydrogels 5.3.1 Physicochemical sensing mechanisms 5.3.2 Biochemical sensing mechanisms 5.4 Coupling chemistries for immobilization of biorecognition elements 5.4.1 Physical immobilization 5.4.2 Amine chemistry 5.4.3 Thiol chemistry 5.4.4 Carboxyl chemistry 5.4.5 Epoxy chemistry 5.4.6 Click chemistry 5.4.7 α-Oxo semicarbazone chemistry 5.4.8 Bioaffinity conjugation 5.5 Antifouling materials 5.5.1 Poly(ethylene glycol) antifouling materials 5.5.2 Zwitterionic antifouling materials 5.6 Outlook References 6 Development of portable immunoassay device for future Internet of Things applications 6.1 Introduction 6.2 Portable immunoassay system based on surface plasmon resonance for urinary immunoassay 6.3 One-chip immunosensing fabricated with nanoimprinting technique 6.3.1 Fabrication of local plasmon resonance devices with various processes 6.3.2 Surface plasmon resonance biosensors fabricated by nanoimprint technique 6.4 Microfluidic biosensor with one-step optical detection 6.4.1 Mechanism of graphene aptasensor 6.4.2 Multichannel linear array for multiple protein detection 6.4.3 Molecular design for enhanced sensitivity 6.5 Future trend References 7 Sensitive and reusable surface acoustic wave immunosensor for monitoring of airborne mite allergens 7.1 Introduction 7.2 Surface acoustic wave immunosensor for repeated measurement of house dust mite allergens 7.3 Sensor characteristics and semicontinuous measurement of Der f 1 7.4 Sensitivity improvement via gold nanoparticles 7.5 Conclusion References 8 Aptameric sensors utilizing its property as DNA 8.1 Introduction 8.2 Aptamer-immobilized electrochemical sensor 8.3 Detection using complementary chain formation 8.3.1 Strand displacement assay 8.3.2 Bound/Free separation using complementary chain formation 8.4 Aptamer sensor combined with enzymes 8.5 Utilizing structural change of aptamers to biosensor 8.6 Utilizing structural change of aptamers to biosensor 8.7 Development of highly sensitive sensors by amplifying DNA strands 8.8 Colorimetric detection using aptameric sensor and smart devices 8.9 Conclusion References 9 Electrochemical sensing techniques using carbon electrodes prepared by electrolysis toward environmental Internet of Thin... 9.1 Introduction 9.1.1 Electrochemical monitoring support Internet of Things services 9.1.2 Carbon electrode surface activation 9.2 Chemical sensors using electrochemical activated carbon electrodes 9.2.1 Electrochemical activated techniques for aminated electrode preparation 9.2.2 Electrochemical activated techniques for electrodeposited platinum particles on glassy carbon electrode modified with... 9.3 Electrocatalytic activity and analytical performance 9.4 Conclusion and future perspectives Acknowledgments References 10 Chemical sensors for environmental pollutant determination 10.1 Introduction 10.2 Definition of a chemical sensor 10.3 Classification of chemical sensors 10.3.1 Electrochemical sensors 10.3.1.1 Voltammetric sensors 10.3.1.2 Amperometric sensors 10.3.1.3 Electrochemical impedance spectroscopy sensors 10.3.1.4 Potentiometric sensors 10.3.2 Optical sensors 10.3.2.1 Fluorescence sensors 10.3.2.2 Surface plasmon resonance sensors 10.3.2.3 Infrared and Raman spectroscopy-based sensors 10.3.2.4 Colorimetric sensors 10.4 Conclusion Acknowledgments References II. Flexible, Wearable, and Mobile Sensors and Related Technologies 11 Smart clothing with wearable bioelectrodes “hitoe” 11.1 Introduction 11.2 Functional material “hitoe” 11.2.1 Composite material of a conductive polymer and fibers 11.2.2 The development of hitoe smart clothing 11.3 Application examples 11.3.1 Medicine/rehabilitation 11.3.2 Sports 11.3.2.1 Heart rate measurement 11.3.2.2 Surface electromyography measurements 11.3.3 Worker health/safety management 11.4 State estimation based on heart rate variability and other data 11.4.1 Estimating posture information from accelerometer data 11.4.2 Estimating respiratory activity from electrocardiogram data 11.4.3 Estimating sleep states 11.5 Conclusion References 12 Cavitas bio/chemical sensors for Internet of Things in healthcare 12.1 Introduction 12.2 Soft contact lens type bio/chemical sensors 12.2.1 Tear fluid in conjunctiva sac 12.2.2 Flexible conductivity sensor for tear flow function 12.2.3 Soft contact lens type biosensors using biocompatible polymers 12.2.4 Transcutaneous gas sensor at eyelid conjunctiva 12.3 Mouthguard type biosensor for saliva biomonitoring 12.3.1 Salivary fluids in oral cavity 12.3.2 Wireless mouthguard sensor for salivary glucose 12.4 Conclusion Acknowledgments References 13 Point of care testing apparatus for immunosensing 13.1 Introduction 13.2 Immunochromatography assay 13.3 Immunochromatography assay for infectious diseases 13.4 Reliability of the examination kits 13.5 Signal amplification 13.6 Quantitative ICA by electrochemical detection systems 13.7 Rapid and Quantitative ICA based on dielectrophoresis 13.8 Conclusion References 14 IoT sensors for smart livestock management 14.1 Introduction 14.2 Measurement site and fixing method 14.3 Size and weight 14.4 Power consumption 14.5 Frequency bands of radio wave 14.6 Applications of wearable biosensors for livestock 14.6.1 Chickens 14.6.2 Cattle 14.6.2.1 Automated milking system 14.6.2.2 Importance of wearable sensors 14.6.2.3 Pedometers 14.6.2.4 Ruminal sensors 14.6.2.5 Vaginal sensors 14.6.2.6 Implantable sensors 14.6.2.7 Wireless thermometers attached to skin surface 14.7 Conclusion References 15 Compact disc-type biosensor devices and their applications 15.1 Introduction 15.2 CD-shaped microfluidic devices for cell isolation and single cell PCR 15.2.1 Single cell isolation 15.2.2 Single cell PCR of S. enterica 15.2.3 Discrimination of microbes 15.2.4 Single cell RT-PCR for Jurkat cells 15.3 CD-shaped microfluidic device for cell staining 15.4 CD-shaped microfluidic device for ELISA 15.4.1 Detection of bioactive chemicals based on ELISA 15.4.2 Multiple ELISA for diagnosis of diabetes 15.5 Conclusion Acknowledgment References 16 A CMOS compatible miniature gas sensing system 16.1 Introduction 16.2 Complementary metal–oxide–semiconductor-compatible gas sensor 16.2.1 Materials and fabrication 16.2.2 Gas experimental results 16.3 Nose-on-a-chip 16.3.1 System block diagram 16.3.2 Adaptive interface circuitry 16.3.3 SAR ADC 16.3.4 CRBM kernel 16.3.5 Memory 16.3.6 RISC core 16.3.7 Chip measurement results 16.4 Miniature electronic nose system prototype 16.5 Application example 16.6 Conclusion Acknowledgments References 17 Visualization of odor space and quality 17.1 Introduction 17.2 Fluorescence imaging for odor visualization 17.2.1 Principle and system of fluorescence imaging 17.2.2 Fabrication of the visualization system 17.2.3 Visualization based on single fluorescent probe 17.2.4 Visualization based on multispectral fluorescence imaging 17.3 Localized surface plasmon resonance sensor for odorant visualization 17.4 Collecting spatial odor information from on-ground odor sources with a robot system 17.5 Visual odor representation of a volatile molecular based on chemical property by network diagram References 18 Bio-sniffer and sniff-cam 18.1 Introduction: breath and skin gas analysis 18.1.1 Construction of bio-sniffer 18.1.2 Acetone bio-sniffer 18.1.3 Isopropanol bio-sniffer 18.1.4 Sniff-cam system with chemiluminescence 18.1.5 Biofluorometric “sniff-cam” 18.2 Summary Acknowledgments References III. Information and Network Technologies for Sensor-Internet of Things Applications 19 Flexible and printed biosensors based on organic TFT devices 19.1 Introduction 19.1.1 Biosensors for the Internet of Things society 19.1.2 Printed organic biosensors for human healthcare applications 19.2 Organic thin-film transistor-based biosensors 19.2.1 Printing techniques for device fabrication 19.2.2 Organic thin-film transistor-based biosensor principles 19.2.3 Enzyme-based biosensors 19.2.4 Immunosensors 19.2.5 Ion-selective sensors 19.2.6 Wearable sensors using microfluidics 19.3 Sensor systems using flexible hybrid electronics 19.4 Conclusion Acknowledgments References 20 Self-monitoring of fat metabolism using portable/wearable acetone analyzers 20.1 Introduction 20.2 Portable breath acetone analyzer 20.2.1 Prototyped analyzer 20.2.2 Applicability to diet support 20.2.3 Applicability to diabetes care at home 20.2.4 Applicability to “Health Kiosk” 20.3 Wearable skin acetone analyzer 20.3.1 Skin acetone concentrator 20.3.2 Prototyped analyzer 20.3.3 Assumed usage scenario 20.4 Conclusions References 21 Air pollution monitoring network of PM2.5, NO2 and radiation of 137Cs 21.1 Introduction 21.2 PM2.5 monitoring system 21.2.1 Introduction 21.3 Monitoring device (small PM2.5 sensor) 21.4 Mobile sensing of outside PM2.5 21.5 Measurement at several points 21.6 NO2 monitoring system 21.6.1 Introduction 21.7 NO2 monitoring device 21.8 Mobile sensing of outside NO2 21.9 Radiation of 137Cs monitoring system 21.9.1 Introduction 21.10 Radiation of 137Cs monitoring device 21.11 Field test in Fukushima and other areas Acknowledgment References 22 Wireless sensor network with various sensors 22.1 Sensing system with network 22.2 Wireless sensor network as a sensing system 22.3 Wireless sensing system for health condition monitoring with a wearable and flexible sensor 22.3.1 Wearable and flexible electrode with a conductive fiber 22.3.2 Wireless data-transmitting module with many sensors References 23 Data analysis targeting healthcare-support applications using Internet-of-Things sensors 23.1 Motivation for data analysis 23.2 Procedure of data analysis 23.2.1 Analysis design 23.2.1.1 Fundamental data format on computer 23.2.1.2 Example of data format: cluster 23.2.1.3 Example of data format: label 23.2.1.4 Example of data format: value 23.2.1.5 “Tips” in analysis design 23.2.2 Data collection 23.2.3 Data cleansing 23.2.4 Feature extraction 23.2.4.1 Type of data 23.2.4.2 Example of features 23.2.4.3 Missing data handling 23.2.4.4 Tips for feature extraction 23.2.5 Learning 23.2.6 Evaluation 23.2.6.1 Clustering 23.2.6.2 Classification 23.2.6.3 Regression 23.2.6.4 For further evaluation 23.3 Example of health data analysis 23.4 Conclusion References Summary and future issues Index Back Cover