دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش:
نویسندگان: Edmund K. Miller
سری:
ISBN (شابک) : 1839538139, 9781839538131
ناشر: Scitech Publishing
سال نشر: 2023
تعداد صفحات: 376
[328]
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 35 Mb
در صورت تبدیل فایل کتاب Charge Acceleration and the Spatial Distribution of Radiation Emitted by Antennas and Scatterers (Electromagnetic Waves) به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب شتاب بار و توزیع فضایی تابش ساطع شده از آنتن ها و پراکنده ها (امواج الکترومغناطیسی) نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این کتاب بر جنبه های مختلف تابش EM از دیدگاه های مختلف تمرکز دارد. هدف ارائه یک مبنای مفهومی برای خواننده برای درک تابش EM و معرفی برخی ابزارهای محاسباتی مرتبط برای به دست آوردن نتایج کمی مرتبط با توزیع آن است.
The book focuses on various aspects of EM radiation from a variety of perspectives. The goal is to provide the reader with a conceptual basis for understanding EM radiation and to introduce some associated computational tools for obtaining relevant quantitative results relating to its distribution.
Cover Contents Journal articles and book chapters that are related to electromagnetic radiation by the author and his colleagues About the author Dedication Presentations Preface Introduction 1 Overview 1.1 Introduction 1.2 The electric-field kink model of electromagnetic radiation 1.3 The proportionality between charge acceleration and radiation from a generic wire object 1.4 Time-domain energy measures 1.5 The dependence of time-domain radiation loss on the circumference and wire radius of a circular loop 1.6 The differentiated on- surface Poynting vector as a measure of radiation loss from wires 1.7 Time-domain far-field analysis of radiation sources (TDFARS) and TWTD 1.8 Frequency-domain far-field analysis of radiation sources (FDFARS) and NEC 1.9 A comparison of time-domain and frequency-domain FARS 1.10 An examination of the radiation properties of specified currents 1.11 Development and comparison of the incremental FARS (IFARS) and incremental IEMF (IIEMF) methods 1.12 The Schelkunoff–Feldman radiation resistance 1.13 Comparison of the radiation properties of a sinusoidal current filament and a PEC dipole of near-zero radius 1.14 The incremental FAR field and degrees of freedom of the sinusoidal current filament 1.15 Appendix A 1.16 Appendix B References 2 The electric-field kink model of electromagnetic radiation 2.1 Introduction 2.1.1 The propagation speed of EM fields is finite 2.1.2 Electric lines of force are continuous 2.2 The "KINK" model of radiation 2.3 Some simple charge motions that produce radiation 2.3.1 An abrupt start and stop 2.3.2 A charge abruptly stopped 2.3.3 A charge given a constant push 2.3.4 A charge moving at constant speed around a circle 2.3.5 A charge moving at constant speed around a square 2.3.6 A charge undergoing oscillatory motion 2.3.7 The effect of increasing speed on an oscillating charge 2.4 How field lines close on a physical antenna 2.5 Summary References 3 Charge-acceleration and radiation from a generic wire object 3.1 Introduction 3.2 Charge reflection and radiation 3.3 A preview of radiation and current decay for a straight wire 3.4 Comparing current decay on a long wire and circular loop 3.5 Source-region radiation 3.6 Propagation radiation 3.7 Reflection radiation from the end of a wire 3.8 Reflection radiation from resistive loads 3.9 Radiation from directional reflection at a 90-deg bend 3.10 Reflection radiation from a step in the wire radius 3.11 An energy measure that demonstrates radiation loss 3.12 Summary of the derived AFs 3.13 Summary References 4 Time-domain electromagnetic-field energy measures 4.1 Introduction 4.2 Stored-energy measures 4.3 Implementation of time-domain energy measures 4.4 Some additional examples of TDEMs 4.5 Summary References 5 Radiation-loss dependence of a circular loop antenna on its circumference and wire radius 5.1 Introduction 5.2 Numerical results for the loop antenna 5.2.1 Varying the loop circumference 5.2.2 Varying the loop wire radius 5.3 Comparing a loop and straight wire 5.4 Summary References 6 Differentiating the on- surface Poynting vector of a wire to determine its radiation loss 6.1 Introduction: current decay and propagation radiation in the frequency domain 6.1.1 Current decay and charge reflection in the frequency domain 6.2 A preview of frequency-domain FARS 6.3 Power flow near a straight- wire antenna 6.3.1 The PV 6.3.2 Power flow near a PEC wire 6.4 FARS and differentiated-PV (DPV) results for a dipole antenna 6.5 FARS and DPV results for a transmission-line driven dipole antenna 6.6 FARS and DPV results for a straight-wire scatterer 6.6.1 FARS and the DPV for a 10-wavelength wire scatterer at normal incidence 6.6.2 FARS and the DPV for a 10- wavelength scatterer at near-axial incidence 6.6.3 The near-interaction field on a straight-wire scatterer 6.7 FARS and DPV results for some other thin-wire antennas 6.7.1 A dipole with two right-angle bends 6.7.2 A circular loop antenna 6.7.3 A square loop antenna 6.7.4 A zigzag antenna 6.8 Summary Acknowledgment References 7 Time- domain far-field analysis of radiation sources and TWTD 7.1 Introduction 7.1.1 The perfect electric conductor as a radiator 7.1.2 Why does radiation occur? 7.1.3 Charge acceleration on a perfect electric conductor excited as an antenna 7.2 Time-domain FARS (TDFARS) 7.3 Validating time-domain FARS 7.4 Some representative applications of TDFARS 7.4.1 Radiation from straight wires 7.4.2 Scattering from straight wires 7.4.3 Radiation from loops 7.5 The effect of varying the source location 7.6 How charge reflection causes the FARS energy distribution 7.7 Summary Appendix A: The occurrence of negative linear-power and -energy results from FARS Acknowledgment References 8 Frequency-domain far-field analysis of radiation sources and NEC 8.1 Introduction 8.2 Some background 8.3 The FARS approach 8.4 The induced electromotive force method 8.5 Tangential electric fields of the sinusoidal current filament 8.6 Initial FDFARS results for the sinusoidal current filament 8.7 FDFARS results for straight wires 8.8 FDFARS results for wire loops 8.9 FDFARS results for arrays 8.10 Other geometries 8.11 A more complex geometry 8.12 Summary References 9 Time- domain FARS and frequency- domain FARS compared 9.1 Comparison of time-domain and frequency-domain far-field analysis of radiation sources 9.2 Results for straight wires 9.3 Results for wire loops 9.4 The transmission-line excited dipole antenna 9.5 A dipole enclosed by a wire cage 9.6 Summary References 10 The radiation properties of some specified currents 10.1 Introduction 10.2 Using the IEMF method to analyze radiation from the SCF 10.3 Results for other specified currents 10.4 The Schelkunoff–Feldman distributed radiation resistance 10.5 Summary References 11 The incremental FARS (IFARS) and incremental IEMF (IIEMF) methods 11.1 Some background 11.2 Generalizing the IEMF method 11.3 FARS and its incremental version 11.3.1 The basic frequency-domain FARS 11.3.2 Incremental FARS 11.4 The incremental IEMF method 11.5 Numerical results 11.6 Discussion 11.7 Summary References 12 The Schelkunoff–Feldman radiation resistance 12.1 Discussion and extension 12.2 Summary 13 Radiation from a near-zero-radius dipole and a sinusoidal current filament 13.1 Introduction 13.2 Ways in which the SCF and PEC dipole are similar 13.2.1 Total radiated power as a function of current length 13.2.2 Radiation pattern 13.2.3 Linear power density 13.2.4 Schelkunoff–Feldman distributed radiation resistance 13.3 Ways in which the SCF and PEC dipole are different 13.3.1 Current distributions 13.3.2 Time-average Poynting vectors parallel to the currents 13.3.3 Tangential electric fields 13.3.4 Distributions of induced EMF power 13.4 The different radiation mechanisms for the near-zero-radius dipole and the sinusoidal current filament 13.4.1 Radiation from the sinusoidal current filament 13.4.2 Radiation from the PEC dipole 13.5 Summary References 14 The pattern rank and spatial radiation distribution of radiation emitted by a sinusoidal current filament 14.1 Introduction 14.2 The far field of the SCF 14.3 The implications of numerically evaluating the far field 14.4 Examination of the far-field analytical expression 14.5 Examination of numerically evaluating the far field 14.6 The degrees of freedom of various patterns 14.7 Current and charge relationship to radiation 14.8 Summary References Appendix A: The thin- wire time- domain (TWTD) computer code Appendix B: The Numerical Electromagnetics Code (NEC) Appendix C: Notation Index Back Cover