دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 1
نویسندگان: Seid Mahdi Jafari (editor)
سری: Nanoencapsulation in the Food Industry
ISBN (شابک) : 0128156678, 9780128156674
ناشر: Academic Pr
سال نشر: 2020
تعداد صفحات: 680
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 12 مگابایت
در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد
در صورت تبدیل فایل کتاب Characterization of Nanoencapsulated Food Ingredients: Volume 4 به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب خصوصیات مواد غذایی نانوکپسوله شده: جلد 4 نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
ویژگی مواد غذایی نانوکپسوله شده، جلد چهارم در سری Nanoencapsulation در صنایع غذایی، برخی از روش های رایج تجزیه و تحلیل ابزاری و خصوصیات را برای ارزیابی نانوحامل ها معرفی می کند. و مواد نانو کپسوله شده از نظر مورفولوژی، توزیع اندازه، بار سطحی و ترکیب، ظاهر، خواص فیزیکی و شیمیایی و رئولوژیکی و فعالیت آنتی اکسیدانی آنها.
این کتاب که در پنج بخش تقسیم شده است، ویژگیهای کمی و کیفی مواد غذایی نانوکپسولهشده را با تکنیکهای مختلف خصوصیات، علاوه بر ارتباط رفتار نانوحامل با خواص فیزیکوشیمیایی و عملکردی آنها، پوشش میدهد.
نوشته شده توسط تیمی متشکل از متخصصان جهانی در زمینههای نانوکپسولهسازی و ریزپوشانی مواد غذایی، مواد غذایی و مواد دارویی، این عنوان برای کسانی که در زمینههای مختلف نانوکپسولهسازی و سیستمهای تحویل نانو فعالیت دارند، ارزش زیادی دارد.
Characterization of Nanoencapsulated Food Ingredients, Volume Four in the Nanoencapsulation in the Food Industry series, introduces some of the common instrumental analysis and characterization methods for the evaluation of nanocarriers and nanoencapsulated ingredients in terms of their morphology, size distribution, surface charge and composition, appearance, physicochemical and rheological properties, and antioxidant activity.
Divided in five sections, the book covers the qualitative and quantitative properties of nanoencapsulated food ingredients by different characterization techniques, besides correlating nanocarrier behavior to their physicochemical and functional properties.
Authored by a team of global experts in the fields of nano- and microencapsulation of food, nutraceutical, and pharmaceutical ingredients, this title is of great value to those engaged in the various fields of nanoencapsulation and nanodelivery systems.
Cover CHARACTERIZATION OF NANOENCAPSULATED FOOD INGREDIENTS, Volume 4 Copyright Contributors Preface to the series Preface to Volume 4 1 Introduction to characterization of nanoencapsulated food ingredients Introduction Nano-scale delivery systems for bioactive components and nutraceuticals Features and characterization of nanocarriers Morphology of nanoencapsulated food ingredients Transmission electron microscopy: TEM (Chapter 2) Scanning electron microscopy: SEM (Chapter 3) Confocal laser scanning microscopy: CLSM (Chapter 4) Atomic force microscopy: AFM (Chapter 5) Size and surface characteristics of nanoencapsulated food ingredients Dynamic light scattering: DLS (Chapter 6) Surface charge: Zeta-potential (Chapter 7) Surface composition analysis by X-ray photoelectron spectroscopy: XPS (Chapter 8) Structural analysis of nanoencapsulated food ingredients X-ray diffraction: XRD (Chapter 9) Differential scanning calorimetry: DSC (Chapter 10) Fourier transform infrared spectroscopy: FTIR (Chapter 11) Nuclear magnetic resonance: NMR (Chapter 12) Small angle scattering: SAXS/SANS (Chapter 13) Physicochemical and rheological characteristics of nanoencapsulated food ingredients Optical analysis by color measurement (Chapter 14) Rheological characterization by viscometers (Chapter 15) Rheological analysis by rheometers (Chapter 16) Spectroscopic and chromatographic analysis (Chapter 17) Antioxidant activity analysis (Chapter 18) Conclusion References Section A: Morphology of nanoencapsulated food ingredients 2 Transmission electron microscopy (TEM) of nanoencapsulated food ingredients Introduction Background and theory of TEM Instrument setup Cryo-preparation methods for TEM Freeze-etching and freeze-fracturing Advantages and limitations of freeze-fracture TEM Cryo-TEM Experimental setup Preparation of specimen and potential artefacts Cryo analytical TEM (cryo-ATEM): An emerging TEM approach Nanoscale delivery systems studied by TEM Polymeric nanoparticles Nanoliposomal carriers Nanoemulsion delivery systems Solid lipid nanoparticles (SLNs) and nanostructured lipid carriers (NLCs) Nanofibers Conclusion References Further reading 3 Scanning electron microscopy (SEM) of nanoencapsulated food ingredients Introduction Importance of morphology evaluation and different available techniques Atomic force microscopy (AFM) Transmission electron microscope (TEM) Scanning electron microscope (SEM) Fundamentals of SEM; Instrumental and technical background Freeze-fracture preparation Cryo-preparation Technical differences in the methods of sample preparation for SEM Applications of SEM for different bioactive-loaded nanocarriers Lipid nanocarriers Protein/polysaccharide-based nanocarriers Nanofibers and nanotubes Nanocomposites and bioactive packaging films Mesoporous nanoparticles Conclusion and recent advances References Further reading 4 Confocal laser scanning microscopy (CLSM) of nanoencapsulated food ingredients Introduction Principles of confocal microscopy Potentials and limitations of CLSM Applications of CLSM in nanoencapsulated food ingredients Solid lipid nanoparticles (SLNs) and nanostructured lipid carriers (NLCs) Biopolymeric nanocarriers Nanoemulsion systems Conclusion References 5 Atomic force microscopy (AFM) of nanoencapsulated food ingredients Introduction A brief history of AFM Working principles of AFM Potentials and challenges of AFM Topography imaging of nanoencapsulated materials by AFM Force measurement using AFM Importance of mechanical properties Application of AFM to study nanomechanical properties of nanocarriers Mathematical models for force measurement using AFM Hertz model Sneddon model Bilodeau model Conclusion and further remarks References Further reading Section B: Size and surface characteristics of nanoencapsulated food ingredients 6 Dynamic light scattering (DLS) of nanoencapsulated food ingredients Introduction Dynamic light scattering: An overview Rayleigh scattering How to analyze the size distributions? Interpreting and understanding DLS data Case study: Characterization of nanoencapsulated β-carotene into TPP-chitosome nanoparticles by DLS DLS studies of nanoencapsulated food ingredients Nanoemulsions Solid lipid nanoparticles Nanostructured lipid carriers Nanoliposomes Biopolymeric nanoparticles References Further reading 7 Surface charge (zeta-potential) of nanoencapsulated food ingredients Introduction Electrical double layer zeta-Potential Principals of zeta-potential measurement Electro-osmosis measurements Streaming potential measurements Electrophoresis measurements Sedimentation potential Methodology of zeta-potential measurement Sample preparation Procedures Pitfalls and limitations Factors that affect zeta-potential pH and ionic strength Interfacial absorbance Zeta-potential measurements for nano/micro-encapsulated food materials Protein-based delivery systems Carbohydrate-based delivery systems Solid lipid nanoparticles Emulsions Food matrix and zeta-potential Dairy products Creams Food gels Juices Conclusions and future prospects References Further reading 8 Surface composition of nanoencapsulated food ingredients by X-ray photoelectron spectroscopy (XPS) Introduction Principles of XPS Instrumentation of XPS XPS applications XPS applications for encapsulated food ingredients XPS applications in the food industry Conclusion and future trends References Section C: Structural analysis of nanoencapsulated food ingredients 9 X-ray diffraction (XRD) of nanoencapsulated food ingredients Introduction X-ray scattering Elementary principles of XRD XRD instrumentation Preparation of specimen Nanoengineered food delivery systems studied by XRD Polymeric nanoparticles Nanoliposomal carriers Nanostructured lipid carriers (NLCs) and solid lipid nanoparticles (SLNs) Electrospun/electrosprayed nanostructures Conclusion References 10 Differential scanning calorimetry (DSC) of nanoencapsulated food ingredients Introduction Fundamentals of DSC Types of DSCs Heat flux DSC Power compensation DSC Modulated DSC (MDSC) Calibration of DSCs Primary applications of DSC Transition temperatures recorded in DSC analysis Determination of the degree of crystallization and melting of polymers Heat capacity DSC for investigation of structural properties Application of DSC coupling with other thermal and physical tests DSC coupling with XRD DSC coupling with FTIR Thermogravimetric analysis (TGA) Differential thermal analysis (DTA) Differential photocalorimetry (DPC) Thermal stability of natural biopolymers determined by DSC Thermal behavior of proteins Thermal behavior of polysaccharides Thermal behavior of lipids Improvement of thermal stability of biopolymers Application of DSC in nanoencapsulation of food ingredients Thermal stability of bioactive-loaded nanocapsules determined by DSC DSC for confirmation of encapsulation DSC for evaluation of encapsulation efficiency DSC for determination of Tg as a function of water content DSC as a method for determination of storage stability New approaches to enhance thermal stability of food ingredients by nanoencapsulation Natural pigments Flavoring agents Other bioactive food ingredients Probiotics Bacteriophages Antioxidants Vitamins Conclusion References Further reading 11 Fourier transform infrared (FT-IR) spectroscopy of nanoencapsulated food ingredients Introduction Fundamentals of FT-IR spectroscopy Sample preparation and transmission measurements Liquid samples Solid samples The role of FT-IR spectroscopy in encapsulation field Infrared absorption of protein solutions Characterization of encapsulated bioactive compounds by FT-IR Phenolic compounds Carotenoids Essential oils Conclusions References 12 Nuclear magnetic resonance (NMR) spectroscopy of nanoencapsulated food ingredients Introduction: A historical perspective Basic principles of NMR spectroscopy NMR operating systems: Applicable for analyzing nanoencapsulated food ingredients Continuous-wave and Fourier (pulsed) transform spectrometers Solid-state and liquid-state NMR operating systems One-dimensional and multidimensional NMR spectroscopy Qualitative and quantitative analysis of nanoencapsulated food ingredients by proton and carbon NMR spectroscopies Proton NMR analysis 13C NMR analysis NMR relaxation measurements Summarizing remarks References Further reading 13 Small angle scattering (SAS) techniques for analysis of nanoencapsulated food ingredients Introduction Fundamentals of small-angle scattering Experimental design and data collection Data analysis and interpretation Small-angle scattering instrumentation SAXS and SANS studies on food-relevant encapsulation structures Emulsion-based encapsulation systems Lipid nano-carriers Copolymers and micelles Protein capsules Carbohydrate-based encapsulation structures Microgels Coacervates Conclusions and outlook References Section D: Physicochemical and rheological characteristics of nanoencapsulated food ingredients 14 Optical analysis of nanoencapsulated food ingredients by color measurement Introduction Principles of color measurement Optical analysis of micro/nanoencapsulated food ingredients in different food models Bakery products Dairy products Beverage products Powder food ingredients Other models Conclusions and perspectives References 15 Rheological characterization of liquid nanoencapsulated food ingredients by viscometers Introduction to rheology Rheology of emulsions as delivery systems Nanoemulsions Oil type and droplet volume Importance of liquid rheology in other encapsulation systems Electrospraying/electrospinning Nano spray drying Nanostructured lipid carriers Conclusions References Further reading 16 Rheological analysis of solid-like nanoencapsulated food ingredients by rheometers Introduction Key indicators of rheological analysis Viscosity Complex shear modulus Bulk modulus Youngs modulus or modulus of elasticity (E) Storage modulus Loss modulus Loss factor Zero shear viscosity Newtonian/non-Newtonian fluids Shear stress Shear strain Yield stress Common rheometers for rheological analysis of nanoencapsulated food ingredients Rotational rheometer Benefits: Limitation: Capillary rheometer Benefits: Limitations: Torque rheometer Benefits: Interfacial rheometer EDM ODM Rheological analysis of solid-like nanoencapsulated food ingredients Nanoemulsions Nanoliposomes Solid lipid nanoparticles Nanohydrogels Cubosomes Nanostructured lipid carriers Aerogels Factors affecting rheology of nanoencapsulated food ingredients Importance of rheological properties in encapsulated systems Conclusion References 17 Spectroscopic and chromatographic analyses of nanoencapsulated food ingredients Introduction Characterization of nanoencapsulated food ingredients Size and morphology Binding and stability Structure and composition Analysis of nanoencapsulated food bioactives by spectroscopy Basics of spectroscopy Common spectroscopic methods for nanoencapsulated food ingredients UV-visible spectrophotometry Mass spectrometry (MS) Sample preparation and measurement Analysis of nanoencapsulated food bioactives by chromatography Basics of chromatography Common chromatographic methods for nanoencapsulated food ingredients High performance liquid chromatography (HPLC) GC-MS LC-MS Sample preparation and measurement Conclusion References Further reading 18 Antioxidant activity analysis of nanoencapsulated food ingredients Introduction Importance of nanoencapsulation for antioxidant food ingredients Analytical techniques for measuring antioxidant activity of nanoencapsulated ingredients Spectroscopic techniques FRAP technique DPPH technique ABTS technique HORAC technique ORAC technique TRAP technique CUPRAC technique PFRAP technique Folin-Ciocalteu method Fluorimetry Electrochemical techniques Amperometric technique Cyclic voltammetric technique Biamperometric technique Biosensors technique Chromatographic methods HPLC Gas chromatography TLC autography technique Qualitative analysis Semi quantitative analysis Cellular antioxidant activity (CAA) Commonly used methods for evaluating antioxidant activity of nanoencapsulated foods The influence of encapsulation on antioxidant properties of food ingredients Conclusion References Further reading Index Back Cover