دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 2
نویسندگان: R Sivaramakrishnan
سری: Chapman & Hall/CRC Pure and Applied Mathematics
ISBN (شابک) : 1138495786, 9781138495784
ناشر: Chapman and Hall/CRC
سال نشر: 2019
تعداد صفحات: 444
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 13 مگابایت
در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد
در صورت تبدیل فایل کتاب Certain Number-Theoretic Episodes In Algebra, Second Edition (Chapman & Hall/CRC Pure and Applied Mathematics) به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب اپیزودهای نظری اعداد معین در جبر، ویرایش دوم (چپمن و هال/CRC ریاضیات محض و کاربردی) نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
در این کتاب سعی شده است به ارتباط متقابل بین نظریه اعداد و جبر اشاره شود تا دانش آموز مفاهیم اساسی خاصی را در دو حوزه تشکیل دهنده موضوع کتاب درک کند.
The book attempts to point out the interconnections between number theory and algebra with a view to making a student understand certain basic concepts in the two areas forming the subject-matter of the book.
Cover Half Title Title Page Copyright Page Dedication Table of Contents Preface Acknowledgment About the Author Chapter-Wise Description of the Contents Section I: - ELEMENTS OF THE THEORY OF NUMBERS 1: From Euclid to Lucas: Elementary Theorems Revisited Introduction 1.1. The quotient ring Z/rZ (r > 1) 1.2. Congruences modulo a prime 1.3. Fermat’s two-squares theorem 1.4. Lagrange’s four-squares theorem 1.5. Worked-out examples 1.6. Notes / Remarks Exercises References 2: Solutions of Congruences, Primitive Roots Introduction 2.1. Theorems on congruences 2.2. Worked-out examples 2.3. Notes / Remarks Exercises References 3: The Chinese Remainder Theorem 3.1. Introduction 3.2. The Chinese Remainder Theorem 3.3. Worked-out examples 3.4. Notes / Remarks Exercises References 4: Möbius Inversion Introduction 4.1. Abstract Möbius inversion 4.2. Deduction: Möbius inversion of number theory 4.3. The power set P(X) of a finite set X 4.4. A worked-out example 4.5. Notes / Remarks Exercises References 5: Quadratic Residues (mod r) (r > 1) Introduction 5.1. Preliminaries: Gauss’ lemma 5.2. Eisenstein lemma 5.3. Quadratic reciprocity law 5.4. First Supplement to quadratic reciprocity law 5.5. Second supplement to quadratic reciprocity law 5.6. The Jacobi symbol 5.7. Worked-out examples 5.8. Notes / Remarks Exercises References 6: Decomposition of a Number as a Sum of Two or Four Squares Introduction 6.1. Gaussian integers 6.2. Integral quaternions 6.3. Landau’s Theorem 6.4. Worked-out examples 6.5. Notes / Remarks Exercises References 7: Dirichlet Algebra of Arithmetical Functions Introduction 7.1. Arithmetical convolutions 7.2. Arithmetic functions 7.3. Möbius inversion (another form) 7.4. Unitary convolution 7.5. UFD property of the ring of arithmetic functions 7.6. Worked-out examples 7.7. Notes / Remarks Exercises References 8: Modular Arithmetical Functions Introduction 8.1. Eckford Cohen’s orthogonal property for Ramanujan sums 8.2. Finite Fourier series representations of even functions (mod r) 8.3. An application 8.4. A worked-out example 8.5. Notes / Remarks Exercises References 9: A Generalization of Ramanujan Sums Introduction 9.1. Jordan’s totient Jk(r) 9.2. Residue systems (mod k, r) 9.3. A generalization of C(n, r) 9.4. An application 9.5. Worked-out examples 9.6. Notes / Remarks Exercises References 10: Ramanujan Expansions of Multiplicative Arithmetic Functions Introduction 10.1. Averages of even functions (mod r) 10.2. Series expansions 10.3. Worked-out examples 10.4. Notes / Remarks Exercises References Section II: - SELECTED TOPICS IN ALGEBRA 11: On the Uniqueness of a Group of Order r (r > 1) Introduction 11.1. On the nature of a group of order pq where p, q are primes (with p < q) 11.2. Uniqueness of a group of order r 11.3. A primality test 11.4. A worked-out example 11.5. A generalization 11.6. Notes / Remarks Exercises References 12: Quadratic Reciprocity in a Finite Group Introduction 12.1. Preliminaries 12.2. Group characters 12.3. Quadratic reciprocity in respect of a finite group G 12.4. A worked-out example 12.5. Notes / Remarks Exercises References 13: Commutative Rings with Unity Introduction 13.1. Divisibility theory in integral domains 13.2. Zorn’s lemma 13.3. Irreducibles and primes 13.4. Euclidean domains 13.5. Almost Euclidean domains 13.6. Certain radicals of a ring / semisimplicity 13.7. Worked-out examples 13.8. Notes / Remarks Exercises References 14: Noetherian and Artinian Rings Introduction 14.1. Commutative rings with unity 14.2. Properties of noetherian rings 14.3. Lasker-Noether decomposition theorem 14.4. Artinian rings 14.5. Worked-out examples 14.6. Notes / Remarks Exercises References Section III: - GLIMPSES OF THE THEORY OF ALGEBRAIC NUMBERS 15: Dedekind Domains Introduction 15.1. R-modules 15.2. Dedekind domains 15.3. Elements integral over a ring R 15.4. Integral domains having finite norm property 15.5. Worked-out examples 15.6. Notes / Remarks Exercises References 16: Algebraic Number Fields Introduction 16.1. Galois Theory for subfields of C 16.2. The degree relation 16.3. Algebraic numbers and algebraic number fields 16.4. Algebraic integers 16.5. The ideal class group 16.6. The Diophantine equation x2 + 2y2 = n 16.7. Finiteness of the class number 16.8. Worked-out examples 16.9. Notes / Remarks Exercises References Section IV: - SOME ADDITIONAL TOPICS 17: Vaidyanathaswamy’s Class-Division of Integers Modulo r Introduction 17.1. An example [4] of class-division of integers (mod r) 17.2. Evaluation of γkij 17.3. An application 17.4. A worked-out example 17.5. Notes / Remarks Exercises References 18: Burnside’s Lemma and a Few of Its Applications Introduction 18.1. Action of a group on a set 18.2. Applications 18.3. A worked-out example 18.4. Notes / Remarks Exercises References 19: On Cyclic Codes of Length n over Fq Introduction 19.1. Mathematical formulation 19.2. The binary symmetric channel 19.3. Block codes 19.4. Linear codes of length n over Fq 19.5. Extension of Fields 19.6. q-cyclotomic cosets mod n 19.7. Cyclic codes of length n over Fq 19.8. Factorization of xn - 1 (n ≥ 1) 19.9. The generating polynomial of a cyclic code 19.10. Worked-out examples 19.11. Notes / Remarks Exercises References 20: An Analogue of the Goldbach Problem Introduction 20.1. The ring Mn(Z) of n × n matrices 20.2. A matrix analogue of the Goldbach problem 20.3. A worked-out example 20.4. Notes / Remarks Exercises References Appendix A: On the Partition Function p(r) (r ≥ 1) A.1. Definition and some properties References Appendix B: Thumb-Nail Sketches of Biographies of Forty-One Prominent Mathematicians B.1. Euclid (circa 300 B.C) B.2. Eratosthenes (276–195/194 B.C) B.3. Diophantus (circa 250 A.D) B.4. Aryabhata (476–550 A.D) B.5. Brahmagupta (b. 598 A.D) B.6. Madhava(n) of Sangamagrāma (circa 1100 A.D) B.7. Bhaskara II or Bhaskaracharya (Bhaskara, the learned) (1114–1185 A.D) B.8. Neelakanta Somayajin (1444–1544 A.D) B.9. Pierre de Fermat (1601–1665) B.10. Christian Goldbach (1690–1764) B.11. Leonhard Euler (1707–1783) B.12. Jean Le Rand d’Alembert (1717–1783) B.13. Joseph-Louis Lagrange (1736–1813) B.14. John Wilson (1741–1793) B.15. Adrien-Marie Legendre (1752–1833) B.16. Carl Friedrich Gauss (1777–1855) B.17. Niels Henrik Abel (1802–1829) B.18. Carl Gustav Jacob Jacobi (1804–1851) B.19. Johann Peter Gustav Lejeune Dirichlet (1805–1859) B.20. W. R. Hamilton (1805–1865) B.21. Eduard E. Kummer (1810–1893) B.22. Everiste Galois (1811–1832) B.23. Arthur Cayley (1821–1896) B.24. F. G. Max Eisenstein (1823–1852) B.25. Leopold Kronecker (1823–1891) B.26. Richard Dedekind (1831–1916) B.27. Peter Ludwig Mejdell Sylow (1832–1918) B.28. Edouard Lucas (1842–1891) B.29. Ferdinand Georg Fröbenius (1849–1917) B.30. David Hilbert (1862–1943) B.31. Jacquess Hadamard (1865–1963) B.32. De la Vallee Poussin (1866–1962) B.33. Godfrey Herald Hardy (1877–1947) B.34. Emmy Noether (1882–1935) B.35. Srinivasa Ramanujan (1887–1920) B.36. R. Vaidyanathaswamy (1894–1960) B.37. Max Zorn (1906–1993) B.38. S. Minakshisundaram (1913–1968) B.39. Paul Erdos (1913–1996) B.40. C. S. Seshadri B.41. Herald Mead Stark References A Table Giving a Comparative Study of Number Theory and Algebra Appendix C: Suggested for Further Study / Reading List of symbols Author Index Index of Mathematical Terms