دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش:
نویسندگان: Koh-ichi Nagata (editor)
سری:
ISBN (شابک) : 1071638092, 9781071638095
ناشر: Humana
سال نشر: 2024
تعداد صفحات: 367
[355]
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 14 Mb
در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد
در صورت تبدیل فایل کتاب Cerebral Cortex Development: Methods and Protocols (Methods in Molecular Biology, 2794) به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب توسعه قشر مغز: روش ها و پروتکل ها (روش ها در زیست شناسی مولکولی، 2794) نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این جلد آخرین پیشرفت ها در مطالعه قشر مغز را بررسی می کند. فصلهای این کتاب طیف گستردهای یا روشهای تثبیتشدهای مانند هیبریداسیون درجا برشهای مغز را پوشش میدهند. تصویربرداری FRET/FLIM دو فوتونی از نورون های مغزی. تجزیه و تحلیل BioID پروتئین های اتصال دهنده اکتین. تولید سلولهای iPS با استفاده از وکتورهای ویروس Sendai. ضبط در داخل بدن کل سلول از مغز موش. و سنجش حرکتی در لارو مگس سرکه و مگس بالغ. این فصلها که در قالبهای بسیار موفق سری Methods in Molecular Biology نوشته شدهاند، شامل مقدمهای بر موضوعات مربوطه، فهرستی از مواد و معرفهای لازم، پروتکلهای آزمایشگاهی گام به گام و بهراحتی قابل تکرار و نکاتی در مورد عیبیابی و اجتناب از دامهای شناخته شده است. جامع و کامل، توسعه قشر مغز: روشها و پروتکلها منبع ارزشمندی است که به محققان متخصص و مبتدی کمک میکند تا درک خود را از این زمینه مهم بیشتر کنند.
This volume explores the latest developments in the study of the cerebral cortex. The chapters in this book cover a wide array or established methods such as in situ hybridization of brain slices; two-photon FRET/FLIM imaging of cerebral neurons; BioID analysis of actin-binding proteins; generation of iPS cells using Sendai Virus vectors; in vivo whole-cell recording from the mouse brain; and locomotor assays in Drosphila larvae and adult flies. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Comprehensive and thorough, Cerebral Cortex Development: Methods and Protocols is a valuable resource that will help both expert and novice researchers further enhance their understanding of this important field.
Preface Contents Contributors Chapter 1: Overview: Research on the Genetic Architecture of the Developing Cerebral Cortex in Norms and Diseases 1 Introduction 2 From a Single Gene to Integrated Functional Genomic Analysis 3 From Nonhuman Models to Human Brain Organoids 4 Big Datasets and Computer-Driven Neuroscience 5 Unraveling the Underlying Mechanisms of Neuropsychiatric Disorders Will Lead Us to Precision Medicine and a Biological Under... References Chapter 2: In Situ Hybridization of Brain Slices 1 Introduction 2 Materials 2.1 Probes, Kit, and Equipment 2.2 Solutions 3 Methods 3.1 Preparation of Brain Slices and FFPE Blocks 3.2 Prepare Slides 3.3 Pretreat the Samples 3.4 Prepare the Materials 3.5 Run the Assay 3.6 Evaluate the Results 4 Notes References Chapter 3: Immunohistochemistry of Brain Tissues 1 Introduction 2 Materials 2.1 Solutions 2.2 Heat-Induced Antigen Retrieval (HIAR) 2.3 Antibodies 3 Methods 3.1 Perfusion Fixation and Process for Paraffin Embedding 3.2 Slide Preparation, Deparaffinization, and Rehydration 3.3 HIAR (See Note 17) 3.4 Inactivation of Endogenous Peroxidase 3.5 Blocking Nonspecific Binding Sites 3.6 Primary and Secondary Antibody Application 3.7 Chromogen Application 3.8 Counterstaining, Dehydration, and Mounting 3.9 Automated Immunostainer as another Option for IHC (See Note 28) 4 Notes References Chapter 4: Two-Photon FRET/FLIM Imaging of Cerebral Neurons 1 Introduction 2 Materials 2.1 Animals 2.2 Cell Culture and Transfection 2.3 Cell Lysate 2.4 Fluorospectrometric Assay 2.5 Organotypic Slice Culture and Transfection 2.6 Two-Photon FRET Imaging 2.7 Two-Photon FLIM Imaging by Photoactivation 3 Methods 3.1 HEK293T Cell Culture and Transfection 3.2 HEK293T Cell Lysate 3.3 In Vitro Fluorospectrometric Assays for FRET 3.4 Organotypic Slice Culture and Transfection 3.5 Two-Photon FRET Neuron Imaging 3.6 In Vitro Two-Photon FLIM Imaging 3.7 Two-Photon FLIM Neuron Imaging 4 Notes References Chapter 5: Pre- and Postembedding Immunoelectron Microscopy to Analyze the Central Nervous System 1 Introduction 2 Materials 2.1 Fixation 2.2 Instruments for Perfusion Fixation (In Case of Mouse) 2.3 Immunoelectron Microscopy 2.4 Instruments for Preembedding Immunoreaction 2.5 Semithin and Ultrathin Sectioning 3 Methods 3.1 Fixation (In Case of Perfusion Fixation of Mice) 3.2 Preembedding Method 3.2.1 Sectioning with Vibrating Microtome 3.2.2 Immunohistochemical Procedures (In Case of a Peroxidase Reaction) 3.2.3 Postfixation in Osmium Tetroxide 3.2.4 Dehydration and Embedding in Resin 3.2.5 LM Observation and Excising of Region of Interest for EM 3.2.6 Trimming the Sections for Ultramicrotome 3.2.7 Semithin Sectioning 3.2.8 Ultrathin Sectioning 3.2.9 Staining of Ultrathin Sections 3.3 Postembedding Method (In Case of Freeze-Substituted with Lowicryl) 3.3.1 Sectioning with Vibrating Microtome 3.3.2 Cryoprotection 3.3.3 Trimming of 500 μm Cubic Sections of Tissue 3.3.4 Plunge-Freezing in Liquid Nitrogen (Metal Contact Method, MM80) 3.3.5 Freeze-Substitution (Automatic Freeze Substitution System) 3.3.6 Ultrathin Sectioning 3.3.7 Immunogold Labeling (See Note 19) 3.3.8 Negative Staining 3.4 Observation 4 Notes References Chapter 6: Mouse Brain Tissue Preparation for Scanning Electron Microscopy 1 Introduction 2 Materials 2.1 Solutions 3 Methods 3.1 Perfusion Fixation 3.2 Dehydration 3.3 Freezing 3.4 Cracking 3.5 Freeze-Drying 3.6 Fixation 4 Notes References Chapter 7: Simple Method for the Preparation of Postsynaptic Density Fraction from Mouse Brain 1 Introduction 2 Materials 3 Methods 4 Notes References Chapter 8: Reconstitution of Neuronal Motor Traffic on Septin-Associated Microtubules 1 Introduction 2 Materials 2.1 Kinesin Expression and Lysate Collection Materials 2.2 Taxol-Stabilized Microtubule Preparation and Storage Materials 2.3 Septin Expression and Purification Materials 2.4 Kinesin Motility Assay and Septin Coating Materials 3 Methods 3.1 Kinesin Expression and Lysate Collection 3.2 Microtubule Polymerization 3.3 Septin Expression and Purification 3.4 Motility Assay Conditions and Septin Coating 4 Notes References Chapter 9: BioID Analysis of Actin-Binding Proteins 1 Introduction 2 Materials 2.1 Generation of LifeAct-BioID 2.2 Cell Growth and Treatment 2.3 Pulldown Using Streptavidin Magnetic Beads 2.4 Western Blotting with Fluorescent Streptavidin and Actin 3 Methods 3.1 LifeAct-TurboID Construct 3.2 Transient Transfection into HEK293T Cells and Biotin Labeling After Disruption of Actin Polymerization 3.3 Isolation of Biotinylated Proteins Using Magnetic Streptavidin Beads 3.4 Western Blotting with Fluorescent Streptavidin and Actin Antibody 4 Notes References Chapter 10: Proteomic Analyses of the Mouse Brain 1 Introduction 2 Materials 2.1 Protein Extraction from the Mouse Brain 2.2 Protein Fractionation by SDS-PAGE 2.3 Gel Excision and Protein Digestion 2.4 Peptide Extraction 2.5 LC-MS/MS Analysis 3 Methods 3.1 Protein Extraction from the Mouse Brain 3.2 Protein Fractionation by SDS-PAGE (See Note 11) 3.3 Gel Excision and Protein Digestion 3.4 Peptide Extraction 3.5 LC-MS/MS Analysis and Data Processing 4 Notes References Chapter 11: Generation of iPSCs Using Sendai Virus Vectors 1 Introduction 2 Materials 2.1 Solutions and Reagents for Inducing iPSCs from Human DP Cells Using SeV Vectors 2.2 SeV Vector Removal and Detection Reagents 3 Methods 3.1 Preparation of Dental Pulp Cells 3.1.1 Thawing Cryopreserved Dental Pulp Cells 3.1.2 Passaging Dental Pulp Cells 3.2 Preparation of SNL Feeder Cells 3.2.1 Thawing Cryopreserved SNL Feeder Cells 3.2.2 Passaging SNL Cells 3.2.3 Mitomycin C Treatment of SNL Feeder Cells 3.2.4 Using Cryopreserved Mitomycin C-Treated SNL Feeder Cells 3.3 Induction of iPSCs from Dental Pulp Cells 3.3.1 Preparation of Dental Pulp Cells Day 0 3.3.2 Sendai Virus Infection Day 1 Day 2 After Day 3 3.4 Picking and Passaging Primary iPS Cell-Like Colonies 3.5 Confirmation of SeV Vector Infection and Elimination (See Note 28) 3.6 Passage of iPSCs 3.7 Expansion of iPSCs 3.8 Preservation of iPSCs 3.9 Thawing Frozen iPSCs 4 Notes References Chapter 12: Directed Differentiation of Neurons from Human iPSCs for Modeling Neurological Disorders 1 Introduction 2 Materials 3 Methods 3.1 iPSC Culture and Passaging 3.1.1 Preparation of Matrigel-Coated Six-Well Plates 3.1.2 Preparation of mTeSR1 Complete Medium 3.1.3 Thawing hiPSCs 3.1.4 Passaging hiPSCs 3.2 Neural Progenitor Cell (NPC) Differentiation, Passaging, and Freezing 3.2.1 NPC Differentiation 3.2.2 NPC Passaging 3.2.3 NPC Freezing 3.3 Preparation of UNA Lentivirus for Neuron Differentiation 3.3.1 HEK293T Cell Seeding for Transfection 3.3.2 HEK293T Cell Transfection 3.3.3 Lentivirus Collection and Purification 3.3.4 Virus Titration 3.4 Lentiviral Transduction of NPCs 3.5 Neuronal Differentiation and Maturation 3.5.1 Neuronal Differentiation 3.5.2 Neuronal Splitting and Maturation 4 Notes References Chapter 13: Generating Homogeneous Brain Organoids from Human iPSCs 1 Introduction 2 Materials 3 Methods 3.1 iPSC Culture and Passaging 3.2 iPSC Freezing 3.3 iPSC Thawing 3.4 Generation of Brain Organoids 3.4.1 EB Formation 3.4.2 Neural Induction 3.4.3 Matrigel Embedding and Removal 3.4.4 Screening and Maintaining 3.4.5 Immunostaining of Brain Organoids 4 Notes References Chapter 14: Primary Culture of Dissociated Neurons from the Embryonic Cerebral Cortex 1 Introduction 2 Materials 2.1 Brain Dissection 2.2 Coating Dishes 2.3 Gene Transfection and Culture 2.4 Obtaining the Cell Lysate 3 Methods 3.1 Coating Dishes and Preparation for Culture 3.2 Neuron Isolation 3.3 DNA Transfection 3.4 Culture and Preparation of Cell Lysates 4 Notes References Chapter 15: Immunocytochemistry of Primary Cultured Cerebral Cortical Neurons 1 Introduction 2 Materials 2.1 Coating Coverslips 2.2 Fixation and Permeabilization 2.3 Blocking and Antibody Reaction 2.4 Mounting and Observation 3 Methods 3.1 Coating Coverslips and Culturing Neurons 3.2 Fix the Neurons 3.3 Permeabilization 3.4 Blocking and Antibody Reaction 3.5 Fixing Coverslips on the Slide Glass and Analyzing 4 Notes References Chapter 16: Brain Sample Preparation After Performing in Utero Electroporation to Proliferating and Differentiated Cells in th... 1 Introduction 2 Materials 2.1 Plasmid Preparation 2.2 Microcapillary Preparation 2.3 Surgery Preparation 2.4 Animal Preparation 2.5 Dissection for Fixation of Brains 2.6 Brain Sample Preparation for Cryostat 2.7 Cryostat for Generating Brain Slices 2.8 Immunohistochemistry (IHC) 3 Methods 3.1 Preparation 3.2 Anesthesia 3.3 Surgery 3.4 Postsurgery 3.5 Dissection for Fixation of Brains 3.6 Brain Sample Preparation for Cryostat 3.7 Cryostat for Generating Brain Slices 3.8 IHC 4 Notes References Chapter 17: Live Imaging of Migrating Neurons and Glial Progenitors Visualized by in Utero Electroporation 1 Introduction 2 Materials 2.1 In Utero Electroporation 2.2 Slice Culture 3 Methods 3.1 In Utero Electroporation 3.2 Slice Preparation 3.3 Time-Lapse Observation 4 Notes References Chapter 18: Ca2+ Imaging in Immature Cortical Neurons 1 Introduction 2 Materials 2.1 Brain Slice Cutting Solution 2.2 Slice Culture Medium 2.3 Plasmids and Anesthetics Used for IUE 3 Methods 3.1 IUE and Slice Preparation 3.2 Ca2+ Imaging 3.3 Quantitative Analysis of Ca2+ Transients 4 Notes References Chapter 19: In Vitro Patch-Clamp 1 Introduction 2 Materials 2.1 Extracellular Solutions 2.2 Slicing 2.3 Electrodes and Intracellular Solutions 2.4 Electrophysiology Rig SetUp 3 Methods 3.1 Acute Brain Slice Preparation Using a Tissue Slicer 3.2 Manufacturing Electrodes 3.3 Patching Cells 3.4 Recording Action Potentials 3.5 Recording Ion Channel Activity 3.6 Recording Synaptic Activity 4 Notes References Chapter 20: In Vivo Whole-Cell Recording from the Mouse Brain 1 Introduction 2 Materials 2.1 Animals 2.2 Head-Post Implantation 2.3 Habituation for Head-Fixation 2.4 Craniotomy and Durotomy 2.5 Recording 3 Methods 3.1 Surgery for Head-Post Implantation 3.2 Habituation 3.3 Craniotomy 3.4 Recording 4 Notes References Chapter 21: In Vivo Brain Microdialysis 1 Introduction 2 Materials 2.1 Stereotaxic Surgery 2.2 In Vivo Microdialysis 3 Methods 3.1 Stereotaxic Surgery for Guide Cannula Implantation 3.2 In Vivo Microdialysis in Freely Moving Mice 3.2.1 Construction of the Microdialysis Circuit 3.2.2 Preparation of the Microdialysis Probe and Connection to the Circuit 3.2.3 Insertion of the Probe into the Mouse Brain and Initiation of Sampling 4 Notes References Chapter 22: CT Scan Data Analysis in Malformations of Cortical Development 1 Introduction 2 Materials 2.1 CT Scan Machine 3 Methods 3.1 Scanning of the Patient 3.2 CT Scan Images 3.3 CT Data Analysis 4 Notes 4.1 Concluding Remarks References Chapter 23: MRI Data Analysis in Malformations of Cortical Development 1 Introduction 2 Materials 2.1 Magnetic Resonance Scanner 3 Methods 3.1 Imaging Acquisition 3.2 Brain MRI Protocol for Studying MCD 3.3 Data Analysis and Clinical Implications 4 Notes 5 Conclusions References Chapter 24: Genomic Copy Number Analysis Using Droplet Digital PCR: A Simple Method with EvaGreen Single-Color Fluorescent Des... 1 Introduction 2 Materials 3 Methods 3.1 PCR Primer Design 3.2 Sample Preparation (Fig. 1, Table 3) 3.3 Droplet Generation (Fig. 2, See Note 11) 3.4 PCR (See Note 13) 3.5 Setting Up QuantaSoft Software 3.6 Droplet Reading (See Note 20) 3.7 Data Analysis (See Note 22) 4 Notes References Chapter 25: Locomotor Assays in Drosophila Larvae and Adult Flies 1 Introduction 1.1 Crawling Assay Using Larvae 1.2 Climbing Assay Using Adult Flies 2 Materials 2.1 Crawling Assay Using Larvae 2.2 Climbing Assay Using Adult Flies 3 Methods 3.1 Crawling Assay Using Larvae 3.2 Climbing Assay Using Adult Flies 4 Notes References Chapter 26: Analyses of Genetic Regulation of the Nervous System in the Nematode Caenorhabditis elegans 1 Introduction 2 Materials 3 Methods 3.1 Insertion of LoxP Sequences for Tissue-Specific Knockout by the Cre-LoxP Recombination 3.2 Insertion of Degron Sequences for Temporal Protein Degradation by Auxin-Inducible Degron Protein Degradation System 3.3 Micro-injection and Screening 4 Notes References Chapter 27: Analyses of Neural Circuits Governing Behavioral Plasticity in the Nematode Caenorhabditis elegans 1 Introduction 2 Materials 2.1 Single-Worm Tracking Assay 2.2 Multi-Worm Tracker Assay 2.3 Recording and Analysis in Multi-Worm Tracker 3 Methods 3.1 Calcium Imaging and Single-Worm Tracking 3.2 Behavioral Analysis Using the Multi-Worm Tracker (MWT) 3.3 Generating a Temperature Gradient 4 Notes References Chapter 28: Social Behavior in Animal Models of Autism Spectrum Disorder 1 Introduction 2 Social Interaction Test 2.1 Materials 2.1.1 Animals 2.1.2 Equipment (Fig. 1) 2.2 Methods (Fig. 2) 2.2.1 Preparation 2.2.2 Habituation 2.2.3 Test 2.2.4 Analysis 3 Three-Chamber Test 3.1 Materials 3.1.1 Animals 3.1.2 Equipment (Fig. 4) 3.2 Methods 3.2.1 Preparation 3.2.2 Habituation 3.2.3 Test (Fig. 6) Phase 1 (Chamber 1: Empty; Chamber 3: Empty) Phase 2 (Chamber 1: Social Stimulus Mouse (1); Chamber 3: Empty) Phase 3 (Chamber 1: Social Stimulus Mouse (1); Chamber 3: Social Stimulus Mouse (2)) 3.2.4 Analysis (Fig. 7) 4 Notes References Chapter 29: Preparation of Healthy Single Neuron or Astrocyte Suspension from Adult Mouse Brain for RNA-seq 1 Introduction 2 Materials 2.1 Reagents 2.2 Equipment 2.3 Reagent Setup 3 Methods 4 Notes References Index