دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: نویسندگان: Tariq Shah, Lixiao Nie, Marcelo Teixeira Filho, Rabia Amir سری: ISBN (شابک) : 1032164492, 9781032164496 ناشر: CRC Press سال نشر: 2023 تعداد صفحات: 350 [351] زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 19 Mb
در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد
در صورت تبدیل فایل کتاب Cereal Crops: Genetic Resources and Breeding Techniques به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب محصولات غلات: منابع ژنتیکی و تکنیک های اصلاحی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این کتاب اطلاعاتی را در مورد منابع ژنتیکی و ژنومیک جمعآوری میکند تا شناسایی ژرم پلاسمهای خاص، نقشهبرداری صفات، سیستمهای کشت و مهندسی ژنوم مورد نیاز برای توسعه مؤثرتر غلات مقاوم به تنشهای زنده و غیرزیستی را تسهیل کند. رویکردهای عملی برای افزایش تولید محصول به روشی پایدار ارائه می کند.
This book compiles information on genetic resources and genomics to facilitate the identification of specific germplasms, trait mapping, cropping systems, and genome engineering needed for more effective development of biotic and abiotic stress resistant cereals. It presents practical approaches for enhancing crop production in a sustainable way.
Cover Half Title Title Page Copyright Page Dedication Table of Contents Editors Contributors Chapter 1 Farming Systems Improvements in Different Regions 1.1 Introduction 1.2 Cropping Systems in Semi-Arid Areas of Zimbabwe 1.3 Effects of Legumes on Cereal Productivity 1.4 Effects of Legumes on Soil Properties 1.5 Intercropping of Legumes and Cereals 1.6 Conclusion References Chapter 2 Stepwise Intensification Option for Enhancing Cereal-Based Cropping Systems 2.1 Introduction 2.2 Types of Intercropping Systems 2.3 Advantages and Disadvantages of Intercropping 2.4 Evaluation of the Efficiency of Intercropping Systems 2.5 Cropping Pattern in Egypt 2.5.1 Intercropping Cereals with Legumes 2.5.1.1 Intercropping Maize with Soybean 2.5.1.2 Intercropping Maize with Groundnut 2.5.1.3 Intercropping Maize with Cowpea 2.5.1.4 Intercropping Maize or Wheat with Tomato 2.5.2 Intercropping Cereals with Sugar Crops 2.5.2.1 Intercropping with Sugarcane 2.5.2.2 Intercropping with Sugar Beet 2.5.3 Relay Intercropping Cotton with Wheat 2.5.4 Intercropping Cereal Crops with Cassava 2.5.5 Intercropping Cassava with Maize 2.6 Conclusion References Chapter 3 Cereal Yield in Dry Environments: Adaptability of Barley vs. Wheat 3.1 Introduction 3.2 Physiological and Biochemical Reactions to Dry Environments 3.2.1 Photosynthesis 3.2.2 Water and Nutrient Relations 3.2.3 Oxidative Status 3.2.3.1 Reactive Oxygen Species (ROS) 3.2.3.2 Antioxidant System 3.2.4 Osmotic Balance and Hormonal Effect 3.3 Breeding for Dry Environment Tolerance 3.3.1 Genetics for Dry Environment Tolerance at Different Growth Stages 3.3.1.1 At the Germination Stage 3.3.1.2 At the Seedling Stage 3.3.1.3 At the Flowering and Grain-Filling Stages 3.3.2 Distinct Genotyping and Phenotyping for Improving Dry Environment Tolerance in Wheat and Barley 3.3.3 The Use of Nanotechnology to Improve Breeding and Dry Environment Tolerance 3.4 Genetics for Dry Environment Tolerance in Wheat and Barley 3.4.1 The Genetic Basis of Dry Environment Tolerance 3.4.2 Functional Validation of Dry Environment Tolerance QTLS and Candidate Genes 3.4.3 Genomics Analyses of Dry Environment Tolerance 3.4.4 Genetic Engineering of Dry Environment–Tolerant Genes in Wheat and Barley 3.5 Adaptation of Barley and Wheat to Dry Environments 3.5.1 Adaptation of Barley and Wheat to Dry Environments: Morphological Characters 3.5.2 Adaptation of Barley and Wheat to Dry Environments: Apical Development, Leaf, and Tiller Appearance 3.5.3 Adaptation of Barley and Wheat to Dry Environments: Plant Ideotype and Grain Yield 3.6 Conclusion References Chapter 4 Cereal Performance and Senescence 4.1 Introduction 4.2 Physiological Characteristics to Improve Yield Stability 4.3 Evaluating the Yield Stability of the Population under Changing Environment 4.3.1 Senescence is the Ultimate Evolving Phase of Plant Growth 4.3.2 Metabolism of Nitrogen and Re-translocation 4.3.3 Senescence-Related Gene Expression 4.3.4 Genetic Regulation of Aging Phenotype 4.4 The Senescence Process of Barley and Wheat 4.5 High Nutrient Mobilization Efficiency 4.6 Ideal Cereal Senescence Phenotype 4.7 How to Achieve This in Practice 4.8 Conclusion and Remarks References Chapter 5 Cereal Responses to Nutrients and Avenues for Improving Nutrient Use Efficiency 5.1 Introduction 5.2 Cereal Production and Food Security 5.2.1 World Population, Food Security, and Cereals Demand in Developing Countries 5.2.2 The State of Cereals Production and Challenges in Developing Countries 5.3 Basics of Plant Nutrition for Food Security 5.3.1 Recent Trends of Global Nutrient Utilization and NUE in Cereals 5.3.2 Trends in Nutrient Utilization and Nutrient Use Efficiency in Cereals 5.3.3 Impact of Plant Nutrition on Food Quality and Human Health 5.3.4 Impact of Plant Nutrition on Food Quality 5.4 Impact of Plant Nutrition on Human Health 5.4.1 Removal, Loss Mechanism, and Environmental Consequences of Plant Nutrients 5.4.1.1 Removal and Loss of Nutrients 5.4.1.2 Consequences of Loss of Nutrients in Environment 5.5 Optimizing Plant Nutrition for Enhanced NUE and Cereal Production 5.5.1 Chemical Fertilizers and the Concept of 4R Nutrient Stewardship for Sustainable Cereals Productions 5.5.1.1 Right Source 5.5.1.2 Right Rate 5.5.1.3 Right Time 5.5.1.4 Right Place 5.6 Genetic Approaches to Improve Nutrient Use Efficiency in Cereal Crops 5.6.1 Genotypes with Improved NUE 5.6.2 Genes Involved in the NUE 5.6.2.1 Nitrogen Transporter Genes 5.6.2.2 Nitrogen Assimilation and Amino Acid Biosynthesis Genes 5.6.2.3 Signaling Molecule and Transcription Factor in NUE 5.6.3 Phosphate Transporter and Transcription Factors for NUE 5.6.4 Transporter Gene for the Uptake of Micronutrient References Chapter 6 Genetic Resources of Cereal Crops: Collection, Characterization, and Conservation 6.1 Introduction 6.2 Taxonomy 6.2.1 Rice 6.2.2 Maize 6.2.3 Barley 6.2.4 Sorghum 6.3 Botany of Major Cereals 6.3.1 Wheat 6.3.2 Maize 6.3.3 Rice 6.3.4 Sorghum 6.3.5 Barley 6.4 Origin, Domestication, Distribution, and Spread 6.4.1 Wheat 6.4.2 Barley 6.4.3 Rice 6.4.4 Maize 6.4.5 Sorghum 6.5 Germplasm Conservation 6.5.1 Wild Genetic Resources of Cereal Crops 6.5.2 Collections and Conservation Strategies 6.5.3 Conservation Strategies 6.6 Status of Cereal Crop Genetic Resources 6.6.1 Status of Wheat Genetic Resources 6.6.2 In Situ Conservation Status 6.6.3 Ex Situ Conservation Status 6.6.4 Gaps and Priorities 6.7 Status of Rice Genetic Resources 6.7.1 In Situ Conservation Status 6.7.2 Ex Situ Conservation Status 6.7.3 Gaps and Priorities 6.8 Status of Maize Genetic Resources 6.8.1 In Situ Conservation Status 6.8.2 Ex Situ Conservation Status 6.8.3 Gaps and Priorities 6.9 Status of Sorghum Genetic Resources 6.9.1 Ex Situ Conservation Status 6.9.2 Gaps and Priorities 6.10 Germplasm Use 6.10.1 Major Constraints on Cereal Crop Production 6.10.2 Traits Desired 6.10.3 Evaluation of Genetic Diversity 6.10.4 Sources of Desirable Traits 6.10.5 Breeding Options 6.10.6 Genomics-Assisted Breeding 6.10.7 Present Status of Use or Incorporation of Desired Traits 6.10.8 Research Needs 6.11 Future Perspective 6.12 Recent Trends in Supply and Demand for Cereals 6.13 Demand for Cereals References Chapter 7 Resistance Identification and Implementation: Genomics-Assisted Use of Genetic Resources for Breeding against Abiotic Stress 7.1 Introduction 7.2 Abiotic Stress and Plant Metabolism 7.2.1 Drought 7.2.2 Salinity 7.2.3 Temperature 7.2.4 UV Light 7.2.5 Flood 7.2.6 Heavy Metals 7.3 Engineering Abiotic Stress-Tolerant Plants 7.3.1 Conventional Techniques 7.3.2 Transgenic Approaches 7.3.3 CRISPR/Cas 9-Mediated Genome Editing 7.4 Future Prospects References Chapter 8 Genomics-Assisted Use of Genetic Resources for Environmentally Adaptive Plant Breeding: Salinity Tolerance 8.1 Introduction 8.1.1 Soil Salinity: Serious Threats to Cereal Crops Production and Global Food Security 8.1.2 Assessing Salinity Tolerance in the Current Cereal Crops 8.1.3 Advances and Challenges in Developing Salt-Tolerant Cereal Crops 8.2 Genetic Resources for Cereals Improvements: Road toward Designing of Sophisticated and Environmentally Adaptive Plant Breeding 8.2.1 Conventional Breeding 8.2.2 Molecular Breeding 8.2.3 Basic Genome Screening Technologies 8.2.4 Advanced Genome Screening Technologies 8.3 Genomics-Assisted Use of Genetic Resources for Salinity-Resilience Genotypes Developing 8.3.1 Next-Generation Breeding of Salt-Resilient Cereal Germplasms 8.3.2 Mutational Approaches to Develop Salt-Resilient Genotypes 8.3.3 Genome/Gene Editing to Accelerate Cereal Crops’ Salt Tolerance 8.4 Concluding Remarks: Way Forward and Challenges Ahead References Chapter 9 Metabolomics-Assisted Breeding for Enhancing Yield and Quality of Cereals 9.1 Introduction to Plant Metabolomics 9.2 Analytical Techniques and Methodologies Exploited in Metabolomics 9.2.1 Nuclear Magnetic Resonance Spectroscopy 9.2.2 High-Resolution Mass Spectrometry (HRMS) 9.3 Separation Techniques Exploited in Metabolomics 9.3.1 Liquid Chromatography 9.3.2 HPLC 9.3.3 SPME MS 9.3.4 SFC MS 9.3.5 GC-MS and GC-GC MS 9.4 Metabolomics-Assisted Cereal Breeding 9.4.1 Metabolomics-Assisted Breeding to Improve Cereals Composition and Yield 9.4.2 Metabolomics-Assisted Breeding to Control Biotic Stress in Cereals 9.4.2.1 Metabolomics Response toward Necrotrophic Pestilential 9.4.2.2 Metabolomics Response toward Biotrophic Potential 9.4.2.3 Metabolomics Response toward Viral Pestilential 9.4.2.4 Metabolomics Response toward Insect Pestilential 9.4.3 Metabolomics-Assisted Breeding to Control Abiotic Stress in Cereals 9.4.4 Metabolomics-Assisted Breeding to Escalate Amino Acid Contents in Cereals 9.4.5 Targeted Metabolomics in Transgenic Cereals 9.4.6 Untargeted Metabolomics in Transgenic Cereals 9.5 Applications of Metabolomics-Assisted Crop Breeding 9.5.1 Biomarkers for Transgenic Crop Evaluation 9.5.2 Predictor of Heterosis 9.6 QTL Mapping for Refining Crop Metabolomics 9.7 Future Prospects and Limitations 9.8 Conclusion References Chapter 10 Metabolic Responses in Plants under Abiotic Stresses 10.1 Introduction 10.2 Plant Growth Responses under Abiotic Stresses 10.3 Regulation of Metabolic Processes: Osmolyte Accumulation 10.4 Plant Metabolomics Involves Plant Responses at Different Levels 10.4.1 Carbohydrate/Sugar, Amino Acid and Fatty Acid Metabolism 10.4.2 Role of Phytohormones 10.4.2.1 Crosstalk between Phytohormones under Abiotic Stresses 10.4.2.2 Metabolic Engineering of Phytohormones 10.4.2.3 Metabolic Responses in Plants Correlated with Circadian Rhythms 10.4.2.4 Regulation of Circadian Rhythms by Metabolites 10.5 Metabolic Alterations in Response to Different Abiotic Stresses 10.5.1 Drought Stress 10.5.1.1 Osmolyte Accumulation 10.5.2 Salinity Stress 10.5.3 Heat Stress 10.5.4 Flooding Stress 10.5.5 Ozone 10.5.6 Effect on Plant Biochemical Processes 10.5.7 Ozone Effects on Primary and Secondary Metabolism 10.5.8 Ozone Triggers Oxidative Stress 10.5.9 Oxidative Stress 10.6 Conclusion References Chapter 11 Climate Change and Cereal Modeling: Impacts and Adaptability 11.1 Introduction 11.2 Climate Change Influence 11.2.1 Climate Change Influence on Crop Production 11.2.2 Climate Change Influence on Soil Properties 11.2.3 Climate Change Impact on Insect Pests 11.2.4 Climate Change Impact on Plant Pathogens 11.2.5 Climate Change Impact on Yield and Food Security 11.3 Growing Conditions Required for Different Cereal Crops 11.3.1 Internal Factors Affecting Crop Production 11.3.2 External Factors Affecting Crop Production 11.3.2.1 Paddy (Rice) 11.3.2.2 Pearl Millet 11.3.2.3 Maize 11.3.2.4 Wheat 11.3.2.5 Sorghum 11.3.2.6 Oat 11.4 Cereal Modeling: Potential Approaches to Enhance Cereal Crops Production 11.4.1 Breeding 11.4.2 Recombinant Technology 11.4.3 Gene Editing 11.4.4 Zinc-Finger Nucleases (ZFNs) 11.4.5 Transcription Activator-Like Effector Nucleases (TALENs) 11.4.6 Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) 11.5 Conclusion and Future Directions References Chapter 12 Genetic Transformation Methods in Cereal Crops 12.1 Introduction 12.2 Genetic Improvement of Cereals through Breeding and Classical Cytogenetics 12.2.1 Hybridization within the Primary Gene Pool 12.2.2 Distant Hybridization and Chromosomal Manipulation 12.2.3 Methods of Direct Gene Transfer in Cereals 12.2.3.1 Biolistic Transformation 12.2.3.2 Protoplast Transformation 12.2.3.3 Liposome Fusion Method 12.2.3.4 Genetic Manipulation via Electroporation 12.2.3.5 Silicon Carbide-mediated Transformation 12.2.3.6 Transformation through Pollination 12.2.4 Indirect Method of Gene Transfer 12.2.4.1 Agrobacterium Gene Transformation in Cereals 12.3 Combinations of Genetic Transformation Technologies 12.3.1 Combination of A. tumefaciens-mediated Transformation with Pollination 12.3.2 Combination of A. tumefaciens-mediated Transformation with Ballistic Transfection 12.3.3 Combination of A. tumefaciens-mediated Transformation by Using Silicon Carbide Fibers 12.4 Gene Transfer Using CRISPR–Cas 12.5 Traits Introduced in Cereals 12.5.1 Disease Resistance 12.5.2 Herbicide Resistance 12.5.3 Pest Resistance 12.5.4 Improvement of Cereal Grain Quality 12.6 Conclusion References Chapter 13 Genome-Edited Cereal Characterization Using Metabolomics 13.1 Introduction 13.2 Genome Editing 13.2.1 CRISPR–Cas9 System 13.2.2 CRISPR–Cpf1/Cas12a 13.2.3 Base Editing 13.3 Genome Editing in Cereals 13.3.1 Metabolomics 13.3.1.1 Role of Metabolomics in Improving Cereal Crops Traits 13.3.1.2 Metabolomic Analysis of Gene-Edited Cereal Crops 13.4 Concluding Remarks References Chapter 14 Multiplexed Genome Editing in Cereals: Trait Improvement Using CRISPR/Cas9 14.1 Introduction 14.2 Multiplex Genome Editing: An Overview 14.3 Development of Vectors for Multiplexing 14.4 CRISPR/Cas9-mediated Multiplex Genome Editing in Cereals 14.5 Gene Editing and Improvement of Cereals: CRISPR/Cas9 Perspective 14.6 Improvement of Yield and Related Traits 14.7 Improvement of Cereal Defense Responses 14.8 Challenges and Outlook of Multiplexing References Index