دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 2 نویسندگان: Olof Liberg, Marten Sundberg, Eric Wang, Johan Bergman, Joachim Sachs, Gustav Wikström سری: ISBN (شابک) : 0081029020, 9780081029022 ناشر: Academic Press سال نشر: 2019 تعداد صفحات: 765 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 53 مگابایت
در صورت تبدیل فایل کتاب Cellular Internet of Things: From Massive Deployments to Critical 5G Applications به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب اینترنت سلولی اشیا: از استقرار گسترده تا برنامه های حیاتی 5G نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
اینترنت سلولی اشیا: از استقرار گسترده تا برنامه های حیاتی 5G، نسخه دوم، درباره کارهای اخیر و سریع انجام شده توسط پروژه مشارکت نسل سوم (3GPP) و اتحاد Multefire (MFA) اطلاعاتی ارائه می دهد. ) برای توسعه سیستم های اینترنت اشیا سلولی. فراتر از فناوریها، خوانندگان میآموزند که بخشهای بازار mMTC و cMTC چگونه به نظر میرسند، گزینههای استقرار و عملکرد مورد انتظار از نظر ظرفیت سیستم، طول عمر باتری مورد انتظار، توان عملیاتی داده، زمان تاخیر دسترسی و هزینه دستگاه، مقررات عملکرد در باندهای فرکانسی بدون مجوز، و اینکه چگونه طراحی و عملکرد سیستم را تحت تاثیر قرار می دهند.
این نسخه جدید حاوی محتوای به روز شده در مورد آخرین ویژگی های EC-GSM IoT، LTE-M و NB-IoT در نسخه 15 3GPP، ارتباطات حیاتی، یعنی URLLC، مشخص شده است. در نسخه 15 3GPP برای LTE و NR، LTE-M و NB-IoT برای باندهای فرکانس بدون مجوز مشخص شده در Multefire Alliance (MFA)، و چشم انداز به روز شده از آنچه در آینده در IoT صنعتی و ارتباطات هواپیماهای بدون سرنشین خواهد داشت، از جمله موضوعات دیگر.
Cellular Internet of Things: From Massive Deployments to Critical 5G Applications, Second Edition, gives insights into the recent and rapid work performed by the 3rd Generation Partnership Project (3GPP) and the Multefire Alliance (MFA) to develop systems for the Cellular IoT. Beyond the technologies, readers will learn what the mMTC and cMTC market segments look like, deployment options and expected performance in terms of system capacity, expected battery lifetime, data throughput, access delay time and device cost, regulations for operation in unlicensed frequency bands, and how they impact system design and performance.
This new edition contains updated content on the latest EC-GSM IoT, LTE-M and NB-IoT features in 3GPP Release 15, critical communication, i.e. URLLC, specified in 3GPP Release 15 for both LTE and NR, LTE-M and NB-IoT for unlicensed frequency bands specified in the Multefire Alliance (MFA), and an updated outlook of what the future holds in Industrial IoT and drone communications, amongst other topics.
Cover Cellular Internet of Things Copyright Biography Preface Acknowledgments 1 - The Internet of Things 1.1 Introduction 1.2 IoT communication technologies 1.2.1 Cellular IoT 1.2.2 Technologies for unlicensed spectrum 1.3 Outline of the book References 2 - Global cellular IoT standards 2.1 3GPP 2.2 Cellular system architecture 2.2.1 Network architecture 2.2.2 Radio protocol architecture 2.3 From machine-type communications to the cellular internet of things 2.3.1 Access class and overload control 2.3.2 Small data transmission 2.3.3 Device power savings 2.3.4 Study on provision of low-cost MTC devices based on LTE 2.3.5 Study on cellular system support for ultra-low complexity and low throughput internet of things 2.3.6 Study on Latency reduction techniques for LTE 2.4 5G 2.4.1 IMT-2020 2.4.2 3GPP 5G 2.4.2.1 5G feasibility studies 2.4.2.2 5G network architecture 2.4.2.3 5G radio protocol architecture 2.4.2.4 NR physical layer 2.4.2.4.1 Modulation 2.4.2.4.2 Numerology 2.4.2.4.3 Time and frequency resources 2.4.2.4.4 Initial access and beam management 2.4.2.4.5 Control and data channels 2.4.2.5 NR and LTE coexistence 2.5 MFA References 3 - EC-GSM-IoT 3.1 Background 3.1.1 The history of GSM 3.1.2 Characteristics suitable for IoT 3.1.2.1 Global deployment 3.1.2.2 Number of frequency bands 3.1.2.3 Small spectrum deployment 3.1.2.4 Module price 3.1.3 Enhancements undertaken by 3GPP 3.2 Physical layer 3.2.1 Guiding principles 3.2.2 Physical resources 3.2.2.1 Channel raster 3.2.2.2 Frame structure 3.2.2.3 Burst types 3.2.3 Transmission schemes 3.2.3.1 Modulation 3.2.3.2 Blind transmissions 3.2.3.3 Coverage Classes 3.2.4 Channel coding and interleaving 3.2.5 Mapping of logical channels onto physical channels 3.2.6 Downlink logical channels 3.2.6.1 FCCH 3.2.6.2 EC-SCH 3.2.6.3 EC-BCCH 3.2.6.4 EC-CCCH/D (EC-AGCH, EC-PCH) 3.2.6.5 EC-PDTCH/D 3.2.6.6 EC-PACCH/D 3.2.7 Uplink logical channels 3.2.7.1 EC-CCCH/U (EC-RACH) 3.2.7.2 EC-PDTCH/U 3.2.7.3 EC-PACCH/U 3.2.8 Extending coverage 3.2.8.1 Defining maximum coupling loss 3.2.8.2 Maximizing the receiver processing gain 3.2.8.3 Improved channel coding 3.2.8.4 More efficient HARQ 3.2.8.5 Increased acquisition time 3.2.8.6 Increasing system capacity 3.3 Idle and connected mode procedures 3.3.1 Idle mode procedures 3.3.1.1 Cell selection 3.3.1.2 Cell reselection 3.3.1.3 Extended coverage system information (EC SI) 3.3.1.4 Coverage Class selection 3.3.1.5 Paging 3.3.1.6 PSM 3.3.1.7 System access procedure 3.3.1.7.1 EC packet channel request 3.3.1.7.2 Coverage Class adaptation 3.3.1.7.3 Contention resolution 3.3.1.7.4 Access Control 3.3.2 Connected mode procedures 3.3.2.1 Assignment and allocation of resources 3.3.2.1.1 Downlink 3.3.2.1.2 Uplink 3.3.2.2 Hybrid ARQ 3.3.2.2.1 EGPRS 3.3.2.2.2 EC-GSM-IoT 3.3.2.2.2.1 Downlink 3.3.2.2.2.2 Uplink 3.3.2.3 Link adaptation 3.3.2.4 Power control 3.3.3 Backward compatibility 3.3.4 Improved security 3.3.5 Device and network capabilities 3.4 Other features 3.4.1 Improved positioning of devices 3.4.2 Improved coverage for 23dBm devices 3.4.3 New TS mapping in extended coverage References 4 - EC-GSM-IoT performance 4.1 Performance objectives 4.2 Coverage 4.2.1 Evaluation assumptions 4.2.1.1 Requirements on logical channels 4.2.1.1.1 Synchronization channels 4.2.1.1.2 Control and broadcast channels 4.2.1.1.3 Traffic channels 4.2.1.2 Radio-related parameters 4.2.1.3 Coverage performance 4.3 Data rate 4.4 Latency 4.4.1 Evaluation assumptions 4.4.2 Latency performance 4.5 Battery life 4.5.1 Evaluation assumptions 4.5.2 Battery life performance 4.6 Capacity 4.6.1 Evaluation assumptions 4.6.1.1 Autonomous reporting and network command 4.6.1.2 Software download 4.6.2 Capacity performance 4.7 Device complexity 4.7.1 Peripherals and real time clock 4.7.2 CPU 4.7.3 DSP and transceiver 4.7.4 Overall impact on device complexity 4.8 Operation in a narrow frequency deployment 4.8.1 Idle mode procedures 4.8.1.1 PLMN and cell selection 4.8.1.2 Cell reselection 4.8.2 Data and control channel performance 4.9 Positioning References 5 - LTE-M 5.1 Background 5.1.1 3GPP standardization 5.1.2 Radio Access Design Principles 5.1.2.1 Low device complexity and cost 5.1.2.2 Coverage enhancement 5.1.2.3 Long device battery lifetime 5.1.2.4 Support of massive number of devices 5.1.2.5 Deployment flexibility 5.1.2.6 Coexistence with LTE 5.2 Physical layer 5.2.1 Physical resources 5.2.1.1 Channel raster 5.2.1.2 Frame structure 5.2.1.3 Resource grid 5.2.2 Transmission schemes 5.2.2.1 Duplex modes 5.2.2.2 Narrowband and wideband operation 5.2.2.3 Coverage enhancement modes 5.2.3 Device categories and capabilities 5.2.4 Downlink physical channels and signals 5.2.4.1 Downlink subframes 5.2.4.2 Synchronization signals 5.2.4.2.1 PSS and SSS 5.2.4.2.2 RSS 5.2.4.3 Downlink reference signals 5.2.4.3.1 CRS 5.2.4.3.2 DMRS 5.2.4.3.3 PRS 5.2.4.4 PBCH 5.2.4.5 MWUS 5.2.4.6 MPDCCH 5.2.4.7 PDSCH 5.2.5 Uplink physical channels and signals 5.2.5.1 Uplink subframes 5.2.5.2 PRACH 5.2.5.3 Uplink reference signals 5.2.5.3.1 DMRS 5.2.5.3.2 SRS 5.2.5.4 PUSCH 5.2.5.5 PUCCH 5.3 Idle and connected mode procedures 5.3.1 Idle mode procedures 5.3.1.1 Cell selection 5.3.1.1.1 Time and frequency synchronization 5.3.1.1.2 Cell identification and initial frame synchronization 5.3.1.1.3 MIB acquisition 5.3.1.1.4 CID and H-SFN acquisition 5.3.1.2 System Information acquisition 5.3.1.2.1 System Information Block 1 5.3.1.2.2 System Information Blocks 2-20 5.3.1.2.3 System Information update 5.3.1.3 Cell reselection 5.3.1.4 Paging, DRX and eDRX 5.3.1.5 Power Saving Mode 5.3.1.6 Random access in idle mode 5.3.1.7 Connection establishment 5.3.1.7.1 RRC resume 5.3.1.7.2 Data over Non-access Stratum 5.3.1.7.3 Early Data Transmission 5.3.1.8 Access control 5.3.1.9 Multicast 5.3.2 Connected mode procedures 5.3.2.1 Scheduling 5.3.2.1.1 Dynamic downlink scheduling 5.3.2.1.2 Dynamic uplink scheduling 5.3.2.1.3 Semipersistent scheduling 5.3.2.2 Channel quality reporting 5.3.2.3 Random access in connected mode 5.3.2.4 Power control 5.3.2.5 Mobility support 5.3.2.6 Positioning 5.3.3 Procedures common for idle and connected mode 5.3.3.1 MPDCCH search spaces 5.3.3.2 Frequency hopping 5.4 NR and LTE-M coexistence References 6 - LTE-M performance 6.1 Performance objectives 6.2 Coverage 6.3 Data rate 6.3.1 Downlink data rate 6.3.2 Uplink data rate 6.4 Latency 6.5 Battery life 6.6 Capacity 6.7 Device complexity References 7 - NB-IoT 7.1 Background 7.1.1 3GPP standardization 7.1.2 Radio access design principles 7.1.2.1 Low device complexity and cost 7.1.2.2 Coverage enhancement 7.1.2.3 Long device battery lifetime 7.1.2.4 Support of massive number of devices 7.1.2.5 Deployment flexibility 7.1.2.5.1 Stand-alone mode of operation 7.1.2.5.2 In-band and guard-band modes of operation 7.1.2.5.3 Spectrum refarming 7.1.2.6 Coexistence with LTE 7.2 Physical layer 7.2.1 Physical resources 7.2.1.1 Channel raster 7.2.1.2 Frame structure 7.2.1.3 Resource grid 7.2.2 Transmission schemes 7.2.2.1 Duplex modes 7.2.2.2 Downlink operation 7.2.2.3 Uplink operation 7.2.3 Device categories and capabilities 7.2.4 Downlink physical channels and signals 7.2.4.1 NB-IoT subframes 7.2.4.2 Synchronization signals 7.2.4.2.1 NPSS 7.2.4.2.2 NSSS 7.2.4.3 NRS 7.2.4.4 NPBCH 7.2.4.5 NPDCCH 7.2.4.6 NPDSCH 7.2.4.7 NPRS 7.2.4.8 NWUS 7.2.5 Uplink physical channels and signals 7.2.5.1 NPRACH 7.2.5.2 NPUSCH 7.2.5.3 DMRS 7.2.5.4 NPRACH and NPUSCH multiplexing 7.2.6 Baseband signal generation 7.2.6.1 Uplink 7.2.6.1.1 Multitone NPUSCH 7.2.6.1.2 Single-tone NPUSCH 7.2.6.1.3 NPRACH 7.2.6.2 Downlink 7.2.7 Transmission gap 7.2.7.1 Downlink transmission gap 7.2.7.2 Uplink transmission gap 7.2.8 TDD 7.2.8.1 Subframe mapping 7.2.8.2 Usage of special subframes 7.2.8.3 NPRACH for TDD 7.2.8.4 NPUSCH for TDD 7.2.8.5 Device assumption on subframes containing NRS 7.2.8.6 System information transmissions 7.2.8.7 Uplink transmission gaps 7.3 Idle and connected mode procedures 7.3.1 Idle mode procedures 7.3.1.1 Cell selection 7.3.1.1.1 Time and frequency synchronization 7.3.1.1.2 Physical cell identification and initial frame synchronization 7.3.1.1.3 MIB acquisition 7.3.1.1.4 Cell identity and H-SFN acquisition 7.3.1.2 SI acquisition 7.3.1.2.1 System Information Block Type 1 7.3.1.2.2 Information specific to in-band mode of operation 7.3.1.2.3 SI blocks 2, 3, 4, 5, 14, 15, 16, 20, 22, 23 7.3.1.2.4 SI update 7.3.1.3 Cell reselection 7.3.1.4 Paging, DRX and eDRX 7.3.1.5 PSM 7.3.1.6 Random access in idle mode 7.3.1.7 Connection establishment 7.3.1.7.1 RRC resume 7.3.1.7.2 Data over Non-access Stratum 7.3.1.7.3 Early Data Transmission 7.3.1.8 Channel quality reporting during random access procedure 7.3.1.9 Access control 7.3.1.10 System access on non-anchor carriers 7.3.1.11 Multicast 7.3.2 Connected mode procedures 7.3.2.1 NPDCCH search spaces 7.3.2.2 Scheduling 7.3.2.2.1 Uplink scheduling 7.3.2.2.2 Downlink scheduling 7.3.2.2.3 Scheduling for Cat-NB2 devices supporting 2 HARQ processes 7.3.2.2.4 TDD scheduling methods 7.3.2.3 Power control 7.3.2.3.1 Enhanced power control for transmitting random access preambles 7.3.2.3.2 Power head room 7.3.2.4 Random access in connected mode 7.3.2.5 Scheduling request 7.3.2.6 Positioning 7.3.2.7 Multicarrier operation 7.4 NR and NB-IoT coexistence 7.4.1 NR and NB-IoT as adjacent carriers 7.4.2 NB-IoT in the NR guard band 7.4.3 NB-IoT deployed using NR resource blocks References 8 - NB-IoT performance 8.1 Performance objectives 8.2 Coverage and data rate 8.2.1 Evaluation assumptions 8.2.1.1 Requirements on physical channels and signals 8.2.1.1.1 Synchronization signals 8.2.1.1.2 Control and broadcast channels 8.2.1.1.3 Traffic channels 8.2.1.2 Radio related parameters 8.2.2 Downlink coverage performance 8.2.2.1 Synchronization signals 8.2.2.2 NPBCH 8.2.2.3 NPDCCH 8.2.2.4 NPDSCH 8.2.3 Uplink coverage performance 8.2.3.1 NPRACH 8.2.3.2 NPUSCH format 1 8.2.3.3 NPUSCH format 2 8.3 Peak data rates 8.3.1 Release 13 Cat-NB1 devices 8.3.2 Cat-NB2 devices configured with 1 HARQ process 8.3.3 Devices configured with two simultaneous HARQ processes 8.4 Latency 8.4.1 Evaluation assumptions 8.4.2 Latency performance 8.5 Battery life 8.5.1 Evaluation assumptions 8.5.2 Battery life performance 8.6 Capacity 8.6.1 Evaluation assumptions 8.6.2 Capacity performance 8.6.3 Latency performance 8.7 Positioning 8.8 Device complexity 8.9 NB-IoT fulfilling 5G performance requirements 8.9.1 Highlights of the differences in 5G mMTC evaluation assumptions 8.9.2 5G mMTC performance evaluation 8.9.2.1 Connection density 8.9.2.2 Coverage 8.9.2.3 Data rate 8.9.2.4 Latency 8.9.2.5 Battery life References 9 - LTE URLLC 9.1 Background 9.2 Physical layer 9.2.1 Radio access design principles 9.2.2 Physical resources 9.2.3 Downlink physical channels and signals 9.2.3.1 Downlink reference signals 9.2.3.2 Slot/subslot-SPDCCH 9.2.3.2.1 General 9.2.3.2.2 SPDCCH resource set 9.2.3.2.3 Mapping to physical resources 9.2.3.2.4 Overview 9.2.3.3 Slot/subslot-PDSCH 9.2.3.3.1 Blind repetitions 9.2.4 Uplink physical channels and signals 9.2.4.1 Uplink reference signals 9.2.4.2 Slot/subslot-SPUCCH 9.2.4.2.1 General 9.2.4.2.2 SPUCCH format 1/1a/1b 9.2.4.2.2.1 Slot 9.2.4.2.2.2 Subslot 9.2.4.2.3 SPUCCH format 3 9.2.4.2.4 SPUCCH format 4 9.2.4.2.4.1 General 9.2.4.2.4.2 Slot 9.2.4.2.4.3 Subslot 9.2.4.3 Slot/subslot-PUSCH 9.2.5 Timing advance and processing time 9.3 Idle and connected mode procedures 9.3.1 Idle mode procedures 9.3.1.1 Control plane latency 9.3.2 Connected mode procedures 9.3.2.1 Configurations 9.3.2.2 Multiplexing of PDSCH and SPDCCH 9.3.2.2.1 General 9.3.2.2.2 RRC-based multiplexing 9.3.2.2.3 DCI-based multiplexing 9.3.2.3 Scheduling request 9.3.2.4 UCI on PUSCH 9.3.2.5 Subframe and subslot/slot collisions 9.3.2.6 HARQ 9.3.2.7 Scheduling 9.3.2.7.1 Dynamic downlink scheduling 9.3.2.7.2 Dynamic uplink scheduling 9.3.2.7.3 Semi-persistent Scheduling 9.3.2.8 Uplink power control 9.3.2.8.1 PUSCH 9.3.2.8.2 SPUCCH 9.3.2.9 Resource allocation 9.3.2.9.1 Downlink 9.3.2.9.2 Uplink 9.3.2.10 CSI reporting 9.3.2.11 PDCP duplication References 10 - LTE URLLC performance 10.1 Performance objectives 10.1.1 User plane latency 10.1.2 Control plane latency 10.1.3 Reliability 10.2 Simulation framework 10.3 Evaluation 10.3.1 User plane latency 10.3.2 Control plane latency 10.3.3 Reliability 10.3.3.1 Reliability of physical channels 10.3.3.1.1 Downlink 10.3.3.1.2 Uplink References 11 - NR URLLC 11.1 Background 11.1.1 5G system 11.1.2 URLLC 11.1.3 NR as the successor of LTE 11.1.4 Introduction of NR URLLC in existing networks 11.1.5 Radio access design principles 11.2 Physical Layer 11.2.1 Frequency bands 11.2.2 Physical layer numerology 11.2.2.1 Flexible numerology 11.2.2.2 Frame structure 11.2.3 Transmissions schemes 11.2.3.1 Beam-based transmissions 11.2.3.2 Bandwidth parts 11.2.3.3 Duplex modes 11.2.3.4 Short transmissions 11.2.3.5 Short processing time 11.2.3.6 Downlink multi-antenna techniques 11.2.3.7 Uplink multi-antenna techniques 11.2.4 Downlink physical channels and signals 11.2.4.1 Synchronization and broadcast signals 11.2.4.2 Reference signals 11.2.4.2.1 DMRS 11.2.4.2.2 PT-RS 11.2.4.2.3 CSI-RS 11.2.4.2.4 TRS 11.2.4.3 PDCCH 11.2.4.3.1 CCE 11.2.4.3.2 CORESET 11.2.4.4 PDSCH 11.2.4.4.1 MCS table for low code rate 11.2.4.4.2 Downlink repetitions 11.2.4.4.3 Downlink pre-emption 11.2.5 Uplink physical channels and signals 11.2.5.1 Reference signals 11.2.5.1.1 DMRS 11.2.5.1.2 SRS 11.2.5.2 PRACH 11.2.5.3 PUCCH 11.2.5.3.1 Long PUCCH 11.2.5.3.2 Short PUCCH 11.2.5.4 PUSCH 11.3 Idle and connected mode procedures 11.3.1 NR protocol stack 11.3.1.1 RRC state machine 11.3.2 Idle mode procedures 11.3.2.1 Control plane signaling 11.3.3 Connected mode procedures 11.3.3.1 Dynamic scheduling 11.3.3.1.1 Scheduling timeline 11.3.3.1.2 DCI 11.3.3.2 HARQ 11.3.3.3 SR 11.3.3.4 Uplink configured grant 11.3.3.4.1 HARQ operation 11.3.3.4.2 Repetition 11.3.3.5 Uplink power control 11.3.3.6 CSI measurement and reporting 11.3.3.7 PDCP duplication References 12 - NR URLLC performance 12.1 Performance objectives 12.1.1 UP latency 12.1.2 CP latency 12.1.3 Reliability 12.2 Evaluation 12.2.1 Latency 12.2.1.1 Processing delay 12.2.1.2 UP latency 12.2.1.2.1 Data latency in FDD 12.2.1.2.2 Data latency in TDD 12.2.1.3 CP latency 12.2.2 Reliability 12.2.2.1 Reliability of physical channels 12.2.2.2 SINR distributions 12.2.2.3 Total reliability 12.2.3 Spectral efficiency 12.3 Service coverage 12.3.1 A wide-area service example: substation protection 12.3.2 A local-area service example: factory automation potential References 13 - Enhanced LTE connectivity for drones 13.1 Introduction 13.2 Propagation channel characteristics 13.3 Challenges 13.4 LTE enhancements introduced in 3GPP Rel-15 13.4.1 Interference and flying mode detection 13.4.2 Flight path information for mobility enhancement 13.4.3 Subscription-based UAV identification 13.4.4 Uplink power control enhancement 13.4.5 UE capability indication References 14 - IoT technologies in unlicensed spectrum 14.1 Operation in unlicensed spectrum 14.1.1 Unlicensed spectrum regulations 14.1.2 Coexistence in unlicensed spectrum 14.2 Radio technologies for unlicensed spectrum 14.2.1 Short-range radio solutions 14.2.1.1 IEEE 802.15.4 14.2.1.2 BLE 14.2.1.3 Wi-Fi 14.2.1.4 Capillary networks 14.2.2 Long-range radio solutions 14.2.2.1 LoRa 14.2.2.2 Sigfox References 15 - MulteFire Alliance IoT technologies 15.1 Background 15.2 LTE-M-U 15.2.1 Radio access design principles 15.2.1.1 FCC regulations 15.2.1.2 ETSI regulations 15.2.2 Physical layer 15.2.2.1 Physical resources 15.2.2.1.1 Channel raster 15.2.2.1.2 Frame structure 15.2.2.1.3 Resource grid 15.2.2.2 Transmission schemes 15.2.2.2.1 Anchor and data segment transmissions 15.2.2.2.2 Transmission modes 15.2.2.2.3 Listen-before-talk 15.2.2.2.4 Frequency hopping 15.2.2.3 Downlink physical channels and signals 15.2.2.3.1 Synchronization signals 15.2.2.3.2 uPSS 15.2.2.3.3 uSSS 15.2.2.3.4 Downlink reference signals 15.2.2.3.4.1 PDRS 15.2.2.3.5 uPBCH 15.2.2.3.6 uPDSCH 15.2.2.3.7 uMPDCCH 15.2.2.4 Uplink physical channels and signals 15.2.2.4.1 uPRACH 15.2.2.4.2 Uplink reference signals 15.2.2.4.3 uPUSCH 15.2.2.4.4 uPUCCH 15.2.3 Idle and connected mode procedures 15.2.3.1 Cell selection and system information acquisition 15.2.3.1.1 SIB-A 15.2.3.1.2 SIB1-BR 15.2.3.2 Paging 15.2.3.3 Power control 15.2.3.4 Medium utilization 15.3 NB-IoT-U 15.3.1 Radio access design principles 15.3.1.1 FCC regulations 15.3.1.2 ETSI regulations 15.3.2 Physical layer 15.3.2.1 Physical resources 15.3.2.1.1 Channel raster 15.3.2.1.2 Frame structure 15.3.2.1.3 Resource grid 15.3.2.2 Transmission schemes 15.3.2.2.1 Anchor and data segment 15.3.2.2.2 Frequency hopping 15.3.2.3 Downlink physical channels and signals 15.3.2.3.1 Synchronization signals 15.3.2.3.2 uNPSS 15.3.2.3.3 uNSSS 15.3.2.3.4 uNRS 15.3.2.3.5 uNPBCH 15.3.2.3.6 uNPDCCH 15.3.2.3.7 uNPDSCH 15.3.2.4 Uplink physical channels and signals 15.3.2.4.1 uNPRACH 15.3.2.4.2 DMRS 15.3.2.4.3 uNPUSCH 15.3.3 Idle and connected mode procedures 15.3.3.1 Cell selection and system information acquisition 15.3.3.1.1 System information acquisition for frame structure type 3N1 15.3.3.1.2 System information acquisition for frame structure type 3N2 15.3.3.2 Power control 15.4 Performance 15.4.1 Performance objectives 15.4.2 Coverage and data rates 15.4.3 Latency 15.4.4 Battery life References 16 - Choice of IoT technology 16.1 Cellular IoT versus non-cellular IoT 16.2 Choice of cellular IoT technology 16.2.1 Cellular technologies for massive IoT 16.2.1.1 Spectrum aspects 16.2.1.2 Features and capabilities 16.2.1.3 Coverage 16.2.1.4 Data rate 16.2.1.5 Latency 16.2.1.6 Battery life 16.2.1.7 Connection density 16.2.1.8 Device complexity 16.2.2 Cellular technologies for critical IoT 16.3 Which cellular IoT technology to select 16.3.1 The mobile network operator's perspective 16.3.2 The IoT service provider's perspective References 17 - Technical enablers for the IoT 17.1 Devices, computing and input/output technologies 17.2 Communication technologies 17.3 Internet technologies for IoT 17.3.1 General features 17.3.1.1 IoT transfer protocols 17.3.1.2 IoT application framework 17.3.1.3 IoT link layer adaptations 17.3.2 Advanced service capabilities and algorithms 17.4 The industrial Internet of Things References 18 - 5G and beyond References Index A B C D E F G H I K L M N O P Q R S T U V W X Z Back Cover