ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Cellular Internet of Things: From Massive Deployments to Critical 5G Applications

دانلود کتاب اینترنت سلولی اشیا: از استقرار گسترده تا برنامه های حیاتی 5G

Cellular Internet of Things: From Massive Deployments to Critical 5G Applications

مشخصات کتاب

Cellular Internet of Things: From Massive Deployments to Critical 5G Applications

ویرایش: 2 
نویسندگان: , , , , ,   
سری:  
ISBN (شابک) : 0081029020, 9780081029022 
ناشر: Academic Press 
سال نشر: 2019 
تعداد صفحات: 765 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 53 مگابایت 

قیمت کتاب (تومان) : 44,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 3


در صورت تبدیل فایل کتاب Cellular Internet of Things: From Massive Deployments to Critical 5G Applications به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب اینترنت سلولی اشیا: از استقرار گسترده تا برنامه های حیاتی 5G نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب اینترنت سلولی اشیا: از استقرار گسترده تا برنامه های حیاتی 5G



اینترنت سلولی اشیا: از استقرار گسترده تا برنامه های حیاتی 5G، نسخه دوم، درباره کارهای اخیر و سریع انجام شده توسط پروژه مشارکت نسل سوم (3GPP) و اتحاد Multefire (MFA) اطلاعاتی ارائه می دهد. ) برای توسعه سیستم های اینترنت اشیا سلولی. فراتر از فناوری‌ها، خوانندگان می‌آموزند که بخش‌های بازار mMTC و cMTC چگونه به نظر می‌رسند، گزینه‌های استقرار و عملکرد مورد انتظار از نظر ظرفیت سیستم، طول عمر باتری مورد انتظار، توان عملیاتی داده، زمان تاخیر دسترسی و هزینه دستگاه، مقررات عملکرد در باندهای فرکانسی بدون مجوز، و اینکه چگونه طراحی و عملکرد سیستم را تحت تاثیر قرار می دهند.

این نسخه جدید حاوی محتوای به روز شده در مورد آخرین ویژگی های EC-GSM IoT، LTE-M و NB-IoT در نسخه 15 3GPP، ارتباطات حیاتی، یعنی URLLC، مشخص شده است. در نسخه 15 3GPP برای LTE و NR، LTE-M و NB-IoT برای باندهای فرکانس بدون مجوز مشخص شده در Multefire Alliance (MFA)، و چشم انداز به روز شده از آنچه در آینده در IoT صنعتی و ارتباطات هواپیماهای بدون سرنشین خواهد داشت، از جمله موضوعات دیگر.

  • اتصال بی سیم همه جا را برای طیف متنوعی از خدمات و برنامه ها فراهم می کند و عملکرد آنها و نحوه توسعه مشخصات آنها را برای برآورده کردن سخت ترین نیازها شرح می دهد
  • توضیح می دهد فناوری‌های دارای مجوز و بدون مجوز مبتنی بر فناوری‌های 2G، 4G و 5G و چگونگی تکامل آنها به سمت اینترنت اشیاء سلولی
  • تکنولوژی اینترنت اشیاء باند باریک و نحوه طراحی GSM، LTE و NR را برای ارائه اینترنت سلولی ارائه می‌کند. سرویس‌های چیزها
  • موارد استفاده را ارائه می‌دهد که سیستم‌های پیچیده بسیار کم را پوشش می‌دهد که میلیاردها دستگاه را به هم متصل می‌کند (مثلاً MTC، mMTC)، MTC و cMTC حیاتی بر اساس ارتباطات فوق‌العاده قابل اعتماد و تأخیر کم (URLLC) برای پاسخگویی به تأخیر شدید و الزامات قابلیت اطمینان

توضیحاتی درمورد کتاب به خارجی

Cellular Internet of Things: From Massive Deployments to Critical 5G Applications, Second Edition, gives insights into the recent and rapid work performed by the 3rd Generation Partnership Project (3GPP) and the Multefire Alliance (MFA) to develop systems for the Cellular IoT. Beyond the technologies, readers will learn what the mMTC and cMTC market segments look like, deployment options and expected performance in terms of system capacity, expected battery lifetime, data throughput, access delay time and device cost, regulations for operation in unlicensed frequency bands, and how they impact system design and performance.

This new edition contains updated content on the latest EC-GSM IoT, LTE-M and NB-IoT features in 3GPP Release 15, critical communication, i.e. URLLC, specified in 3GPP Release 15 for both LTE and NR, LTE-M and NB-IoT for unlicensed frequency bands specified in the Multefire Alliance (MFA), and an updated outlook of what the future holds in Industrial IoT and drone communications, amongst other topics.

  • Provides ubiquitous wireless connectivity for a diverse range of services and applications, describing their performance and how their specifications were developed to meet the most demanding requirements
  • Describes licensed and unlicensed technologies based on 2G, 4G and 5G technologies and how they have evolved towards the Cellular IoT
  • Presents the Narrowband Internet of Things technology and how GSM, LTE and NR have been designed to provide Cellular Internet of Things services
  • Provides use cases that cover ultra-low complex systems connecting billions of devices (massive MTC, mMTC), critical MTC and cMTC based on Ultra-Reliable and Low Latency Communications (URLLC) to meet strict latency and reliability requirements


فهرست مطالب

Cover
Cellular Internet of Things
Copyright
Biography
Preface
Acknowledgments
1 - The Internet of Things
	1.1 Introduction
	1.2 IoT communication technologies
		1.2.1 Cellular IoT
		1.2.2 Technologies for unlicensed spectrum
	1.3 Outline of the book
	References
2 - Global cellular IoT standards
	2.1 3GPP
	2.2 Cellular system architecture
		2.2.1 Network architecture
		2.2.2 Radio protocol architecture
	2.3 From machine-type communications to the cellular internet of things
		2.3.1 Access class and overload control
		2.3.2 Small data transmission
		2.3.3 Device power savings
		2.3.4 Study on provision of low-cost MTC devices based on LTE
		2.3.5 Study on cellular system support for ultra-low complexity and low throughput internet of things
		2.3.6 Study on Latency reduction techniques for LTE
	2.4 5G
		2.4.1 IMT-2020
		2.4.2 3GPP 5G
			2.4.2.1 5G feasibility studies
			2.4.2.2 5G network architecture
			2.4.2.3 5G radio protocol architecture
			2.4.2.4 NR physical layer
				2.4.2.4.1 Modulation
				2.4.2.4.2 Numerology
				2.4.2.4.3 Time and frequency resources
				2.4.2.4.4 Initial access and beam management
				2.4.2.4.5 Control and data channels
			2.4.2.5 NR and LTE coexistence
	2.5 MFA
	References
3 - EC-GSM-IoT
	3.1 Background
		3.1.1 The history of GSM
		3.1.2 Characteristics suitable for IoT
			3.1.2.1 Global deployment
			3.1.2.2 Number of frequency bands
			3.1.2.3 Small spectrum deployment
			3.1.2.4 Module price
		3.1.3 Enhancements undertaken by 3GPP
	3.2 Physical layer
		3.2.1 Guiding principles
		3.2.2 Physical resources
			3.2.2.1 Channel raster
			3.2.2.2 Frame structure
			3.2.2.3 Burst types
		3.2.3 Transmission schemes
			3.2.3.1 Modulation
			3.2.3.2 Blind transmissions
			3.2.3.3 Coverage Classes
		3.2.4 Channel coding and interleaving
		3.2.5 Mapping of logical channels onto physical channels
		3.2.6 Downlink logical channels
			3.2.6.1 FCCH
			3.2.6.2 EC-SCH
			3.2.6.3 EC-BCCH
			3.2.6.4 EC-CCCH/D (EC-AGCH, EC-PCH)
			3.2.6.5 EC-PDTCH/D
			3.2.6.6 EC-PACCH/D
		3.2.7 Uplink logical channels
			3.2.7.1 EC-CCCH/U (EC-RACH)
			3.2.7.2 EC-PDTCH/U
			3.2.7.3 EC-PACCH/U
		3.2.8 Extending coverage
			3.2.8.1 Defining maximum coupling loss
			3.2.8.2 Maximizing the receiver processing gain
			3.2.8.3 Improved channel coding
			3.2.8.4 More efficient HARQ
			3.2.8.5 Increased acquisition time
			3.2.8.6 Increasing system capacity
	3.3 Idle and connected mode procedures
		3.3.1 Idle mode procedures
			3.3.1.1 Cell selection
			3.3.1.2 Cell reselection
			3.3.1.3 Extended coverage system information (EC SI)
			3.3.1.4 Coverage Class selection
			3.3.1.5 Paging
			3.3.1.6 PSM
			3.3.1.7 System access procedure
				3.3.1.7.1 EC packet channel request
				3.3.1.7.2 Coverage Class adaptation
				3.3.1.7.3 Contention resolution
				3.3.1.7.4 Access Control
		3.3.2 Connected mode procedures
			3.3.2.1 Assignment and allocation of resources
				3.3.2.1.1 Downlink
				3.3.2.1.2 Uplink
			3.3.2.2 Hybrid ARQ
				3.3.2.2.1 EGPRS
				3.3.2.2.2 EC-GSM-IoT
					3.3.2.2.2.1 Downlink
					3.3.2.2.2.2 Uplink
			3.3.2.3 Link adaptation
			3.3.2.4 Power control
		3.3.3 Backward compatibility
		3.3.4 Improved security
		3.3.5 Device and network capabilities
	3.4 Other features
		3.4.1 Improved positioning of devices
		3.4.2 Improved coverage for 23dBm devices
		3.4.3 New TS mapping in extended coverage
	References
4 - EC-GSM-IoT performance
	4.1 Performance objectives
	4.2 Coverage
		4.2.1 Evaluation assumptions
			4.2.1.1 Requirements on logical channels
				4.2.1.1.1 Synchronization channels
				4.2.1.1.2 Control and broadcast channels
				4.2.1.1.3 Traffic channels
			4.2.1.2 Radio-related parameters
			4.2.1.3 Coverage performance
	4.3 Data rate
	4.4 Latency
		4.4.1 Evaluation assumptions
		4.4.2 Latency performance
	4.5 Battery life
		4.5.1 Evaluation assumptions
		4.5.2 Battery life performance
	4.6 Capacity
		4.6.1 Evaluation assumptions
			4.6.1.1 Autonomous reporting and network command
			4.6.1.2 Software download
		4.6.2 Capacity performance
	4.7 Device complexity
		4.7.1 Peripherals and real time clock
		4.7.2 CPU
		4.7.3 DSP and transceiver
		4.7.4 Overall impact on device complexity
	4.8 Operation in a narrow frequency deployment
		4.8.1 Idle mode procedures
			4.8.1.1 PLMN and cell selection
			4.8.1.2 Cell reselection
		4.8.2 Data and control channel performance
	4.9 Positioning
	References
5 - LTE-M
	5.1 Background
		5.1.1 3GPP standardization
		5.1.2 Radio Access Design Principles
			5.1.2.1 Low device complexity and cost
			5.1.2.2 Coverage enhancement
			5.1.2.3 Long device battery lifetime
			5.1.2.4 Support of massive number of devices
			5.1.2.5 Deployment flexibility
			5.1.2.6 Coexistence with LTE
	5.2 Physical layer
		5.2.1 Physical resources
			5.2.1.1 Channel raster
			5.2.1.2 Frame structure
			5.2.1.3 Resource grid
		5.2.2 Transmission schemes
			5.2.2.1 Duplex modes
			5.2.2.2 Narrowband and wideband operation
			5.2.2.3 Coverage enhancement modes
		5.2.3 Device categories and capabilities
		5.2.4 Downlink physical channels and signals
			5.2.4.1 Downlink subframes
			5.2.4.2 Synchronization signals
				5.2.4.2.1 PSS and SSS
				5.2.4.2.2 RSS
			5.2.4.3 Downlink reference signals
				5.2.4.3.1 CRS
				5.2.4.3.2 DMRS
				5.2.4.3.3 PRS
			5.2.4.4 PBCH
			5.2.4.5 MWUS
			5.2.4.6 MPDCCH
			5.2.4.7 PDSCH
		5.2.5 Uplink physical channels and signals
			5.2.5.1 Uplink subframes
			5.2.5.2 PRACH
			5.2.5.3 Uplink reference signals
				5.2.5.3.1 DMRS
				5.2.5.3.2 SRS
			5.2.5.4 PUSCH
			5.2.5.5 PUCCH
	5.3 Idle and connected mode procedures
		5.3.1 Idle mode procedures
			5.3.1.1 Cell selection
				5.3.1.1.1 Time and frequency synchronization
				5.3.1.1.2 Cell identification and initial frame synchronization
				5.3.1.1.3 MIB acquisition
				5.3.1.1.4 CID and H-SFN acquisition
			5.3.1.2 System Information acquisition
				5.3.1.2.1 System Information Block 1
				5.3.1.2.2 System Information Blocks 2-20
				5.3.1.2.3 System Information update
			5.3.1.3 Cell reselection
			5.3.1.4 Paging, DRX and eDRX
			5.3.1.5 Power Saving Mode
			5.3.1.6 Random access in idle mode
			5.3.1.7 Connection establishment
				5.3.1.7.1 RRC resume
				5.3.1.7.2 Data over Non-access Stratum
				5.3.1.7.3 Early Data Transmission
			5.3.1.8 Access control
			5.3.1.9 Multicast
		5.3.2 Connected mode procedures
			5.3.2.1 Scheduling
				5.3.2.1.1 Dynamic downlink scheduling
				5.3.2.1.2 Dynamic uplink scheduling
				5.3.2.1.3 Semipersistent scheduling
			5.3.2.2 Channel quality reporting
			5.3.2.3 Random access in connected mode
			5.3.2.4 Power control
			5.3.2.5 Mobility support
			5.3.2.6 Positioning
		5.3.3 Procedures common for idle and connected mode
			5.3.3.1 MPDCCH search spaces
			5.3.3.2 Frequency hopping
	5.4 NR and LTE-M coexistence
	References
6 - LTE-M performance
	6.1 Performance objectives
	6.2 Coverage
	6.3 Data rate
		6.3.1 Downlink data rate
		6.3.2 Uplink data rate
	6.4 Latency
	6.5 Battery life
	6.6 Capacity
	6.7 Device complexity
	References
7 - NB-IoT
	7.1 Background
		7.1.1 3GPP standardization
		7.1.2 Radio access design principles
			7.1.2.1 Low device complexity and cost
			7.1.2.2 Coverage enhancement
			7.1.2.3 Long device battery lifetime
			7.1.2.4 Support of massive number of devices
			7.1.2.5 Deployment flexibility
				7.1.2.5.1 Stand-alone mode of operation
				7.1.2.5.2 In-band and guard-band modes of operation
				7.1.2.5.3 Spectrum refarming
			7.1.2.6 Coexistence with LTE
	7.2 Physical layer
		7.2.1 Physical resources
			7.2.1.1 Channel raster
			7.2.1.2 Frame structure
			7.2.1.3 Resource grid
		7.2.2 Transmission schemes
			7.2.2.1 Duplex modes
			7.2.2.2 Downlink operation
			7.2.2.3 Uplink operation
		7.2.3 Device categories and capabilities
		7.2.4 Downlink physical channels and signals
			7.2.4.1 NB-IoT subframes
			7.2.4.2 Synchronization signals
				7.2.4.2.1 NPSS
				7.2.4.2.2 NSSS
			7.2.4.3 NRS
			7.2.4.4 NPBCH
			7.2.4.5 NPDCCH
			7.2.4.6 NPDSCH
			7.2.4.7 NPRS
			7.2.4.8 NWUS
		7.2.5 Uplink physical channels and signals
			7.2.5.1 NPRACH
			7.2.5.2 NPUSCH
			7.2.5.3 DMRS
			7.2.5.4 NPRACH and NPUSCH multiplexing
		7.2.6 Baseband signal generation
			7.2.6.1 Uplink
				7.2.6.1.1 Multitone NPUSCH
				7.2.6.1.2 Single-tone NPUSCH
				7.2.6.1.3 NPRACH
			7.2.6.2 Downlink
		7.2.7 Transmission gap
			7.2.7.1 Downlink transmission gap
			7.2.7.2 Uplink transmission gap
		7.2.8 TDD
			7.2.8.1 Subframe mapping
			7.2.8.2 Usage of special subframes
			7.2.8.3 NPRACH for TDD
			7.2.8.4 NPUSCH for TDD
			7.2.8.5 Device assumption on subframes containing NRS
			7.2.8.6 System information transmissions
			7.2.8.7 Uplink transmission gaps
	7.3 Idle and connected mode procedures
		7.3.1 Idle mode procedures
			7.3.1.1 Cell selection
				7.3.1.1.1 Time and frequency synchronization
				7.3.1.1.2 Physical cell identification and initial frame synchronization
				7.3.1.1.3 MIB acquisition
				7.3.1.1.4 Cell identity and H-SFN acquisition
			7.3.1.2 SI acquisition
				7.3.1.2.1 System Information Block Type 1
				7.3.1.2.2 Information specific to in-band mode of operation
				7.3.1.2.3 SI blocks 2, 3, 4, 5, 14, 15, 16, 20, 22, 23
				7.3.1.2.4 SI update
			7.3.1.3 Cell reselection
			7.3.1.4 Paging, DRX and eDRX
			7.3.1.5 PSM
			7.3.1.6 Random access in idle mode
			7.3.1.7 Connection establishment
				7.3.1.7.1 RRC resume
				7.3.1.7.2 Data over Non-access Stratum
				7.3.1.7.3 Early Data Transmission
			7.3.1.8 Channel quality reporting during random access procedure
			7.3.1.9 Access control
			7.3.1.10 System access on non-anchor carriers
			7.3.1.11 Multicast
		7.3.2 Connected mode procedures
			7.3.2.1 NPDCCH search spaces
			7.3.2.2 Scheduling
				7.3.2.2.1 Uplink scheduling
				7.3.2.2.2 Downlink scheduling
				7.3.2.2.3 Scheduling for Cat-NB2 devices supporting 2 HARQ processes
				7.3.2.2.4 TDD scheduling methods
			7.3.2.3 Power control
				7.3.2.3.1 Enhanced power control for transmitting random access preambles
				7.3.2.3.2 Power head room
			7.3.2.4 Random access in connected mode
			7.3.2.5 Scheduling request
			7.3.2.6 Positioning
			7.3.2.7 Multicarrier operation
	7.4 NR and NB-IoT coexistence
		7.4.1 NR and NB-IoT as adjacent carriers
		7.4.2 NB-IoT in the NR guard band
		7.4.3 NB-IoT deployed using NR resource blocks
	References
8 - NB-IoT performance
	8.1 Performance objectives
	8.2 Coverage and data rate
		8.2.1 Evaluation assumptions
			8.2.1.1 Requirements on physical channels and signals
				8.2.1.1.1 Synchronization signals
				8.2.1.1.2 Control and broadcast channels
				8.2.1.1.3 Traffic channels
			8.2.1.2 Radio related parameters
		8.2.2 Downlink coverage performance
			8.2.2.1 Synchronization signals
			8.2.2.2 NPBCH
			8.2.2.3 NPDCCH
			8.2.2.4 NPDSCH
		8.2.3 Uplink coverage performance
			8.2.3.1 NPRACH
			8.2.3.2 NPUSCH format 1
			8.2.3.3 NPUSCH format 2
	8.3 Peak data rates
		8.3.1 Release 13 Cat-NB1 devices
		8.3.2 Cat-NB2 devices configured with 1 HARQ process
		8.3.3 Devices configured with two simultaneous HARQ processes
	8.4 Latency
		8.4.1 Evaluation assumptions
		8.4.2 Latency performance
	8.5 Battery life
		8.5.1 Evaluation assumptions
		8.5.2 Battery life performance
	8.6 Capacity
		8.6.1 Evaluation assumptions
		8.6.2 Capacity performance
		8.6.3 Latency performance
	8.7 Positioning
	8.8 Device complexity
	8.9 NB-IoT fulfilling 5G performance requirements
		8.9.1 Highlights of the differences in 5G mMTC evaluation assumptions
		8.9.2 5G mMTC performance evaluation
			8.9.2.1 Connection density
			8.9.2.2 Coverage
			8.9.2.3 Data rate
			8.9.2.4 Latency
			8.9.2.5 Battery life
	References
9 - LTE URLLC
	9.1 Background
	9.2 Physical layer
		9.2.1 Radio access design principles
		9.2.2 Physical resources
		9.2.3 Downlink physical channels and signals
			9.2.3.1 Downlink reference signals
			9.2.3.2 Slot/subslot-SPDCCH
				9.2.3.2.1 General
				9.2.3.2.2 SPDCCH resource set
				9.2.3.2.3 Mapping to physical resources
				9.2.3.2.4 Overview
			9.2.3.3 Slot/subslot-PDSCH
				9.2.3.3.1 Blind repetitions
		9.2.4 Uplink physical channels and signals
			9.2.4.1 Uplink reference signals
			9.2.4.2 Slot/subslot-SPUCCH
				9.2.4.2.1 General
				9.2.4.2.2 SPUCCH format 1/1a/1b
					9.2.4.2.2.1 Slot
					9.2.4.2.2.2 Subslot
				9.2.4.2.3 SPUCCH format 3
				9.2.4.2.4 SPUCCH format 4
					9.2.4.2.4.1 General
					9.2.4.2.4.2 Slot
					9.2.4.2.4.3 Subslot
			9.2.4.3 Slot/subslot-PUSCH
		9.2.5 Timing advance and processing time
	9.3 Idle and connected mode procedures
		9.3.1 Idle mode procedures
			9.3.1.1 Control plane latency
		9.3.2 Connected mode procedures
			9.3.2.1 Configurations
			9.3.2.2 Multiplexing of PDSCH and SPDCCH
				9.3.2.2.1 General
				9.3.2.2.2 RRC-based multiplexing
				9.3.2.2.3 DCI-based multiplexing
			9.3.2.3 Scheduling request
			9.3.2.4 UCI on PUSCH
			9.3.2.5 Subframe and subslot/slot collisions
			9.3.2.6 HARQ
			9.3.2.7 Scheduling
				9.3.2.7.1 Dynamic downlink scheduling
				9.3.2.7.2 Dynamic uplink scheduling
				9.3.2.7.3 Semi-persistent Scheduling
			9.3.2.8 Uplink power control
				9.3.2.8.1 PUSCH
				9.3.2.8.2 SPUCCH
			9.3.2.9 Resource allocation
				9.3.2.9.1 Downlink
				9.3.2.9.2 Uplink
			9.3.2.10 CSI reporting
			9.3.2.11 PDCP duplication
	References
10 - LTE URLLC performance
	10.1 Performance objectives
		10.1.1 User plane latency
		10.1.2 Control plane latency
		10.1.3 Reliability
	10.2 Simulation framework
	10.3 Evaluation
		10.3.1 User plane latency
		10.3.2 Control plane latency
		10.3.3 Reliability
			10.3.3.1 Reliability of physical channels
				10.3.3.1.1 Downlink
				10.3.3.1.2 Uplink
	References
11 - NR URLLC
	11.1 Background
		11.1.1 5G system
		11.1.2 URLLC
		11.1.3 NR as the successor of LTE
		11.1.4 Introduction of NR URLLC in existing networks
		11.1.5 Radio access design principles
	11.2 Physical Layer
		11.2.1 Frequency bands
		11.2.2 Physical layer numerology
			11.2.2.1 Flexible numerology
			11.2.2.2 Frame structure
		11.2.3 Transmissions schemes
			11.2.3.1 Beam-based transmissions
			11.2.3.2 Bandwidth parts
			11.2.3.3 Duplex modes
			11.2.3.4 Short transmissions
			11.2.3.5 Short processing time
			11.2.3.6 Downlink multi-antenna techniques
			11.2.3.7 Uplink multi-antenna techniques
		11.2.4 Downlink physical channels and signals
			11.2.4.1 Synchronization and broadcast signals
			11.2.4.2 Reference signals
				11.2.4.2.1 DMRS
				11.2.4.2.2 PT-RS
				11.2.4.2.3 CSI-RS
				11.2.4.2.4 TRS
			11.2.4.3 PDCCH
				11.2.4.3.1 CCE
				11.2.4.3.2 CORESET
			11.2.4.4 PDSCH
				11.2.4.4.1 MCS table for low code rate
				11.2.4.4.2 Downlink repetitions
				11.2.4.4.3 Downlink pre-emption
		11.2.5 Uplink physical channels and signals
			11.2.5.1 Reference signals
				11.2.5.1.1 DMRS
				11.2.5.1.2 SRS
			11.2.5.2 PRACH
			11.2.5.3 PUCCH
				11.2.5.3.1 Long PUCCH
				11.2.5.3.2 Short PUCCH
			11.2.5.4 PUSCH
	11.3 Idle and connected mode procedures
		11.3.1 NR protocol stack
			11.3.1.1 RRC state machine
		11.3.2 Idle mode procedures
			11.3.2.1 Control plane signaling
		11.3.3 Connected mode procedures
			11.3.3.1 Dynamic scheduling
				11.3.3.1.1 Scheduling timeline
				11.3.3.1.2 DCI
			11.3.3.2 HARQ
			11.3.3.3 SR
			11.3.3.4 Uplink configured grant
				11.3.3.4.1 HARQ operation
				11.3.3.4.2 Repetition
			11.3.3.5 Uplink power control
			11.3.3.6 CSI measurement and reporting
			11.3.3.7 PDCP duplication
	References
12 - NR URLLC performance
	12.1 Performance objectives
		12.1.1 UP latency
		12.1.2 CP latency
		12.1.3 Reliability
	12.2 Evaluation
		12.2.1 Latency
			12.2.1.1 Processing delay
			12.2.1.2 UP latency
				12.2.1.2.1 Data latency in FDD
				12.2.1.2.2 Data latency in TDD
			12.2.1.3 CP latency
		12.2.2 Reliability
			12.2.2.1 Reliability of physical channels
			12.2.2.2 SINR distributions
			12.2.2.3 Total reliability
		12.2.3 Spectral efficiency
	12.3 Service coverage
		12.3.1 A wide-area service example: substation protection
		12.3.2 A local-area service example: factory automation potential
	References
13 - Enhanced LTE connectivity for drones
	13.1 Introduction
	13.2 Propagation channel characteristics
	13.3 Challenges
	13.4 LTE enhancements introduced in 3GPP Rel-15
		13.4.1 Interference and flying mode detection
		13.4.2 Flight path information for mobility enhancement
		13.4.3 Subscription-based UAV identification
		13.4.4 Uplink power control enhancement
		13.4.5 UE capability indication
	References
14 - IoT technologies in unlicensed spectrum
	14.1 Operation in unlicensed spectrum
		14.1.1 Unlicensed spectrum regulations
		14.1.2 Coexistence in unlicensed spectrum
	14.2 Radio technologies for unlicensed spectrum
		14.2.1 Short-range radio solutions
			14.2.1.1 IEEE 802.15.4
			14.2.1.2 BLE
			14.2.1.3 Wi-Fi
			14.2.1.4 Capillary networks
		14.2.2 Long-range radio solutions
			14.2.2.1 LoRa
			14.2.2.2 Sigfox
	References
15 - MulteFire Alliance IoT technologies
	15.1 Background
	15.2 LTE-M-U
		15.2.1 Radio access design principles
			15.2.1.1 FCC regulations
			15.2.1.2 ETSI regulations
		15.2.2 Physical layer
			15.2.2.1 Physical resources
				15.2.2.1.1 Channel raster
				15.2.2.1.2 Frame structure
				15.2.2.1.3 Resource grid
			15.2.2.2 Transmission schemes
				15.2.2.2.1 Anchor and data segment transmissions
				15.2.2.2.2 Transmission modes
				15.2.2.2.3 Listen-before-talk
				15.2.2.2.4 Frequency hopping
			15.2.2.3 Downlink physical channels and signals
				15.2.2.3.1 Synchronization signals
				15.2.2.3.2 uPSS
				15.2.2.3.3 uSSS
				15.2.2.3.4 Downlink reference signals
					15.2.2.3.4.1 PDRS
				15.2.2.3.5 uPBCH
				15.2.2.3.6 uPDSCH
				15.2.2.3.7 uMPDCCH
			15.2.2.4 Uplink physical channels and signals
				15.2.2.4.1 uPRACH
				15.2.2.4.2 Uplink reference signals
				15.2.2.4.3 uPUSCH
				15.2.2.4.4 uPUCCH
		15.2.3 Idle and connected mode procedures
			15.2.3.1 Cell selection and system information acquisition
				15.2.3.1.1 SIB-A
				15.2.3.1.2 SIB1-BR
			15.2.3.2 Paging
			15.2.3.3 Power control
			15.2.3.4 Medium utilization
	15.3 NB-IoT-U
		15.3.1 Radio access design principles
			15.3.1.1 FCC regulations
			15.3.1.2 ETSI regulations
		15.3.2 Physical layer
			15.3.2.1 Physical resources
				15.3.2.1.1 Channel raster
				15.3.2.1.2 Frame structure
				15.3.2.1.3 Resource grid
			15.3.2.2 Transmission schemes
				15.3.2.2.1 Anchor and data segment
				15.3.2.2.2 Frequency hopping
			15.3.2.3 Downlink physical channels and signals
				15.3.2.3.1 Synchronization signals
				15.3.2.3.2 uNPSS
				15.3.2.3.3 uNSSS
				15.3.2.3.4 uNRS
				15.3.2.3.5 uNPBCH
				15.3.2.3.6 uNPDCCH
				15.3.2.3.7 uNPDSCH
			15.3.2.4 Uplink physical channels and signals
				15.3.2.4.1 uNPRACH
				15.3.2.4.2 DMRS
				15.3.2.4.3 uNPUSCH
		15.3.3 Idle and connected mode procedures
			15.3.3.1 Cell selection and system information acquisition
				15.3.3.1.1 System information acquisition for frame structure type 3N1
				15.3.3.1.2 System information acquisition for frame structure type 3N2
			15.3.3.2 Power control
	15.4 Performance
		15.4.1 Performance objectives
		15.4.2 Coverage and data rates
		15.4.3 Latency
		15.4.4 Battery life
	References
16 - Choice of IoT technology
	16.1 Cellular IoT versus non-cellular IoT
	16.2 Choice of cellular IoT technology
		16.2.1 Cellular technologies for massive IoT
			16.2.1.1 Spectrum aspects
			16.2.1.2 Features and capabilities
			16.2.1.3 Coverage
			16.2.1.4 Data rate
			16.2.1.5 Latency
			16.2.1.6 Battery life
			16.2.1.7 Connection density
			16.2.1.8 Device complexity
		16.2.2 Cellular technologies for critical IoT
	16.3 Which cellular IoT technology to select
		16.3.1 The mobile network operator's perspective
		16.3.2 The IoT service provider's perspective
	References
17 - Technical enablers for the IoT
	17.1 Devices, computing and input/output technologies
	17.2 Communication technologies
	17.3 Internet technologies for IoT
		17.3.1 General features
			17.3.1.1 IoT transfer protocols
			17.3.1.2 IoT application framework
			17.3.1.3 IoT link layer adaptations
		17.3.2 Advanced service capabilities and algorithms
	17.4 The industrial Internet of Things
	References
18 - 5G and beyond
	References
Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z
Back Cover




نظرات کاربران