دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: نویسندگان: Bartosz Milewski, Igal Tabachnik (ed.) سری: ناشر: سال نشر: 2018 تعداد صفحات: [492] زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 16 Mb
در صورت تبدیل فایل کتاب Category Theory for Programmers به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب تئوری دسته برای برنامه نویسان نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Preface Part One Category: The Essence of Composition Arrows as Functions Properties of Composition Composition is the Essence of Programming Challenges Types and Functions Who Needs Types? Types Are About Composability What Are Types? Why Do We Need a Mathematical Model? Pure and Dirty Functions Examples of Types Challenges Categories Great and Small No Objects Simple Graphs Orders Monoid as Set Monoid as Category Challenges Kleisli Categories The Writer Category Writer in Haskell Kleisli Categories Challenge Products and Coproducts Initial Object Terminal Object Duality Isomorphisms Products Coproduct Asymmetry Challenges Bibliography Simple Algebraic Data Types Product Types Records Sum Types Algebra of Types Challenges Functors Functors in Programming The Maybe Functor Equational Reasoning Optional Typeclasses Functor in C++ The List Functor The Reader Functor Functors as Containers Functor Composition Challenges Functoriality Bifunctors Product and Coproduct Bifunctors Functorial Algebraic Data Types Functors in C++ The Writer Functor Covariant and Contravariant Functors Profunctors The Hom-Functor Challenges Function Types Universal Construction Currying Exponentials Cartesian Closed Categories Exponentials and Algebraic Data Types Zeroth Power Powers of One First Power Exponentials of Sums Exponentials of Exponentials Exponentials over Products Curry-Howard Isomorphism Bibliography Natural Transformations Polymorphic Functions Beyond Naturality Functor Category 2-Categories Conclusion Challenges Part Two Declarative Programming Limits and Colimits Limit as a Natural Isomorphism Examples of Limits Colimits Continuity Challenges Free Monoids Free Monoid in Haskell Free Monoid Universal Construction Challenges Representable Functors The Hom Functor Representable Functors Challenges Bibliography The Yoneda Lemma Yoneda in Haskell Co-Yoneda Challenges Bibliography Yoneda Embedding The Embedding Application to Haskell Preorder Example Naturality Challenges Part Three It's All About Morphisms Functors Commuting Diagrams Natural Transformations Natural Isomorphisms Hom-Sets Hom-Set Isomorphisms Asymmetry of Hom-Sets Challenges Adjunctions Adjunction and Unit/Counit Pair Adjunctions and Hom-Sets Product from Adjunction Exponential from Adjunction Challenges Free/Forgetful Adjunctions Some Intuitions Challenges Monads: Programmer's Definition The Kleisli Category Fish Anatomy The do Notation Monads and Effects The Problem The Solution Partiality Nondeterminism Read-Only State Write-Only State State Exceptions Continuations Interactive Input Interactive Output Conclusion Monads Categorically Monoidal Categories Monoid in a Monoidal Category Monads as Monoids Monads from Adjunctions Comonads Programming with Comonads The Product Comonad Dissecting the Composition The Stream Comonad Comonad Categorically The Store Comonad Challenges F-Algebras Recursion Category of F-Algebras Natural Numbers Catamorphisms Folds Coalgebras Challenges Algebras for Monads T-algebras The Kleisli Category Coalgebras for Comonads Lenses Challenges Ends and Coends Dinatural Transformations Ends Ends as Equalizers Natural Transformations as Ends Coends Ninja Yoneda Lemma Profunctor Composition Kan Extensions Right Kan Extension Kan Extension as Adjunction Left Kan Extension Kan Extensions as Ends Kan Extensions in Haskell Free Functor Enriched Categories Why Monoidal Category? Monoidal Category Enriched Category Preorders Metric Spaces Enriched Functors Self Enrichment Relation to 2-Categories Topoi Subobject Classifier Topos Topoi and Logic Challenges Lawvere Theories Universal Algebra Lawvere Theories Models of Lawvere Theories The Theory of Monoids Lawvere Theories and Monads Monads as Coends Lawvere Theory of Side Effects Challenges Further Reading Monads, Monoids, and Categories Bicategories Monads Challenges Bibliography Appendices Index Acknowledgments Colophon Copyleft notice