دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 1 نویسندگان: Ayman S. El-Baz (editor), Jasjit S. Suri (editor) سری: ISBN (شابک) : 0128227060, 9780128227060 ناشر: Academic Press سال نشر: 2021 تعداد صفحات: 360 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 7 مگابایت
در صورت تبدیل فایل کتاب Cardiovascular and Coronary Artery Imaging: Volume 1 به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب تصویربرداری عروق قلبی و عروقی: جلد 1 نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
تصویربرداری عروق قلب و عروق کرونر، جلد اول رویکردهای پیشرفته برای سیستمهای غیرتهاجمی خودکار در تشخیص زودهنگام بیماریهای قلبی عروقی را پوشش میدهد. این کتاب شامل چندین روش تصویربرداری برجسته، مانند فناوریهای MRI، CT و PET است. تاکید ویژه بر تکنیک های تجزیه و تحلیل تصویربرداری خودکار، که برای تجزیه و تحلیل تصویربرداری زیست پزشکی سیستم قلبی عروقی مهم هستند، قرار می گیرد. این یک کار مرجع جامع و چند مشارکتی است که به جزئیات آخرین پیشرفتها در تصویربرداری فضایی، زمانی و عملکردی قلب میپردازد.
Cardiovascular and Coronary Artery Imaging, Volume One covers state-of-the-art approaches for automated non-invasive systems in early cardiovascular disease diagnosis. The book includes several prominent imaging modalities, such as MRI, CT and PET technologies. A special emphasis is placed on automated imaging analysis techniques, which are important to biomedical imaging analysis of the cardiovascular system. This is a comprehensive, multi-contributed reference work that details the latest developments in spatial, temporal and functional cardiac imaging.
Front Cover Cardiovascular and Coronary Artery Imaging Copyright Page Contents List of contributors 1 Advanced coronary artery imaging: optical coherence tomography 1.1 Introduction 1.2 Basic principles of light 1.2.1 Backscatter 1.2.2 Attenuation 1.3 Mechanism and technical modalities of OCT 1.3.1 Time domain 1.3.2 Frequency domain 1.3.3 Spatially encoded 1.3.4 Time encoded 1.4 Scanning techniques 1.4.1 Single point scanning 1.4.2 Parallel scanning 1.5 Pullback 1.6 Image interpretation 1.6.1 Basic image orientation and interpretation 1.6.2 Image interpretation and normal coronary anatomy 1.6.3 Coronary plaque and thrombus characterization 1.6.3.1 Fibrous plaques 1.6.3.2 Calcified plaques 1.6.3.3 Lipid-laden plaques 1.6.3.4 Red thrombus 1.6.3.5 White thrombus 1.6.4 Imaging coronary stents 1.7 Image artifact 1.7.1 Inadequate blood purging 1.7.2 Saturation artifact 1.7.3 Nonuniform rotational distortion 1.7.4 Sew-up artifact (seam artifact) 1.7.5 Fold-over artifact 1.7.6 Bubble artifact 1.7.7 Tangential light drop-out 1.7.8 Merry-go-round artifact 1.7.9 Blooming artifact 1.8 Clinical applications 1.8.1 Plaque analysis 1.8.2 Diagnostic imaging: stable coronary artery disease 1.8.3 Interventional imaging: acute coronary syndrome 1.8.4 Postintervention imaging 1.9 Safety and complications 1.10 Innovations of OCT 1.10.1 C7-XR system 1.10.2 ILUMIEN system 1.10.3 ILUMIEN OPTIS system 1.10.4 OPTIS integrated system 1.10.5 OPTIS mobile system 1.11 Clinical trials 1.11.1 ILUMIEN I trial 1.11.2 ILUMIEN II Trial 1.11.3 ILUMIEN III Trial 1.11.4 ILUMIEN IV Trial References 2 Technique of cardiac magnetic resonance imaging 2.1 Introduction 2.2 Physical principles and pulse sequences 2.2.1 Data acquisition 2.2.2 Morphologic sequences 2.2.2.1 Dark blood sequences 2.2.2.2 Bright blood sequence with cine functional sequences 2.2.2.3 T1 and T2 mapping 2.2.2.4 Myocardial perfusion 2.2.2.5 Delayed contrast-enhanced CMR and myocardial viability 2.2.2.6 CMR angiography 2.2.2.7 Arterial spin labeling 2.2.2.8 Magnetic resonance spectroscopy 2.2.2.9 Cardiac diffusion tensor imaging 2.2.3 Future directions 2.2.3.1 Artificial intelligence 2.2.3.2 Structured reporting References 3 The role of automated 12-lead ECG interpretation in the diagnosis and risk stratification of cardiovascular disease 3.1 Introduction 3.2 Basic knowledge of ECG physiology 3.3 The 12-lead ECG 3.4 ECG signal processing 3.5 Cardiovascular diseases diagnosed by the 12-lead ECG 3.5.1 Rhythm disorders 3.5.1.1 Supraventricular arrhythmias 3.5.1.2 Ventricular arrhythmias 3.5.2 Conduction disorders 3.5.3 Chamber enlargement 3.5.4 Cardiac ischemia or infarction 3.5.4.1 Stable/unstable angina 3.5.4.2 Myocardial infarction 3.6 Automated ECG interpretation 3.7 “Logic” used in automated ECG interpretation systems 3.8 Machine learning and automated 12-lead ECG analysis 3.9 Basic principles of risk stratification 3.9.1 The role of ECG in risk stratification 3.10 ECG-derived markers for risk stratification 3.10.1 ECG risk markers based on conduction disturbances 3.10.2 ECG risk markers based on structural changes 3.10.3 ECG risk markers based on repolarization abnormalities 3.10.4 ECG risk markers based on distortion in heart rhythm regulation 3.11 Challenges and opportunities References 4 Extracting heterogeneous vessels in X-ray coronary angiography via machine learning 4.1 Introduction 4.2 Related works 4.3 MCR-RPCA: motion coherency regularized RPCA for vessel extraction 4.3.1 Motivation and problems 4.3.2 Candidate contrast-filled vessel detection via statistically structured MoG-RPCA 4.3.2.1 Estimation of candidate foreground component 4.3.2.2 Estimation of low-rank background component 4.3.3 Motion coherency regularized RPCA for trajectory decomposition 4.4 SVS-net: sequential vessel segmentation via channel attention network 4.4.1 Architecture of sequential vessel segmentation-network 4.4.1.1 Modification of U-net 4.4.1.2 3D spatiotemporal feature encoder 4.4.1.3 2D and 3D residual convolutional blocks 4.4.1.4 Channel attention mechanism 4.4.1.5 Data augmentation 4.4.1.6 Loss function for class imbalance problem 4.4.2 Segmentation experimental results 4.4.2.1 Materials 4.4.2.2 Performance comparison 4.5 VRBC-t-TNN: accurate heterogeneous vessel extraction via tensor completion of X-ray coronary angiography backgrounds 4.5.1 Global intensity mapping 4.5.2 Background completion using t-TNN 4.5.3 Experimental results 4.5.3.1 Synthetic X-ray coronary angiography data 4.5.3.2 Experiment demonstration 4.5.3.3 Performance comparison 4.6 Conclusion Acknowledgments References 5 Assessing coronary artery disease using coronary computed tomography angiography 5.1 Introduction 5.1.1 The utility of CCTA in Coronary artery disease diagnosis and prognostication 5.2 Patient selection 5.2.1 Other utilities of computed tomography angiography, that is, other than in coronary artery disease 5.2.2 CCTA technique and quality factors 5.3 Spatial resolution 5.4 Temporal resolution 5.5 Technical issues in specific patient subgroups 5.5.1 The future of CCTA 5.5.1.1 Computed tomography perfusion imaging 5.5.1.2 Viability and fibrosis 5.5.1.3 CCTA-derived FFR (FFRCT) 5.6 Clinical trials comparing CCTA to other modalities 5.7 Conclusion References 6 Multimodality noninvasive cardiovascular imaging for the evaluation of coronary artery disease 6.1 Introduction 6.2 Ischemic cascade 6.3 Exercise stress echocardiography 6.4 Pharmacologic stress echocardiography 6.5 Myocardial perfusion stress echocardiography 6.6 Left ventricular strain in exercise stress echocardiography 6.7 Limitations of stress echocardiography 6.8 Computed tomography coronary calcium score 6.9 Limitations of coronary artery calcium 6.10 Computed tomography coronary angiogram 6.11 Limitations of computed tomography coronary angiogram 6.12 Computed tomography in combination with single-photon emission tomography 6.13 Computed tomography in combination with positron emitting tomography 6.14 Limitations and strengths of positron emission tomography and SPECT imaging 6.15 CTCA and fractional flow reserve 6.16 Limitations of FFR CCTA 6.16.1 Cardiac magnetic resonance imaging in coronary artery disease 6.16.2 Cardiac magnetic resonance perfusion imaging 6.17 Cardiac magnetic resonance angiography 6.17.1 Limitations of cardiac magnetic resonance 6.18 Conclusion References 7 Magnetic resonance imaging of ischemic heart disease 7.1 Introduction 7.2 Cardiac MR imaging of myocardial infarction 7.2.1 CMR of acute infarction 7.2.2 CMR with clinical suspicion of acute coronary syndrome 7.2.3 Visualization and characterization of jeopardized myocardium 7.3 MR indicators of myocardial infraction severity 7.3.1 Infarct size and extent of transmural involvement 7.3.2 Microvascular obstruction 7.3.3 Intramyocardial hemorrhage 7.3.4 Myocardial infarct heterogeneity 7.3.5 Right ventricular infarction 7.3.6 Missed infarcts 7.3.7 Chronic myocardial infarction 7.4 Myocardial infarction complications 7.4.1 Thrombus 7.4.2 LV aneurysm 7.5 Future directions References 8 CT angiography of anomalous pulmonary veins 8.1 Introduction 8.2 Classification 8.3 Anomalous in caliber of pulmonary veins 8.3.1 Stenosis of pulmonary vein 8.3.2 Atresia of pulmonary vein 8.3.3 Pulmonary venous varix 8.4 Total anomalous pulmonary venous return 8.4.1 Supracardiac type 8.4.2 Cardiac type 8.4.3 Infracardiac type 8.4.4 Mixed type 8.5 Partial anomalous pulmonary venous return 8.5.1 Partial anomalous venous return (PAPVR) 8.5.2 Veno-venous bridge 8.5.3 Scimitar syndrome 8.5.4 Pseudo-Scimitar syndrome 8.5.5 Cortriatriatum sinister 8.5.6 Levoatriocardinal vein 8.5.7 PAPVR of left upper pulmonary vein (LUL PAPVR) 8.6 Merits, limitations, and future directions 8.7 Conclusion References Further reading 9 Machine learning to predict mortality risk in coronary artery bypass surgery 9.1 Introduction 9.2 Principles and applications of machine learning 9.2.1 Data gathering 9.2.2 Supervised learning 9.2.2.1 Linear regression 9.2.2.2 Logistic regression 9.2.2.3 K-nearest neighbors 9.2.2.4 Random forest algorithm 9.2.2.5 Support vector machines 9.2.3 Unsupervised learning 9.2.4 Discussion 9.3 Conclusion References 10 Computed tomography angiography of congenital anomalies of pulmonary artery 10.1 Introduction 10.2 Classification 10.2.1 Anomalies of caliber 10.2.1.1 Congenital pulmonary artery stenosis 10.2.1.2 Congenital pulmonary artery dilatation 10.2.2 Anomalies origin or course of central branch of pulmonary artery 10.2.2.1 Crossed pulmonary arteries 10.2.2.2 Pulmonary artery sling 10.2.3 Anomalous origin/development of main pulmonary artery (conotruncal anomalies) 10.2.3.1 Tetralogy of Fallot 10.2.3.2 Pulmonary atresia with ventricular septal defect 10.2.3.3 Truncus arteriosus 10.2.3.4 Double outlet right ventricle 10.3 Merits, limitations, and future directions 10.4 Conclusion References 11 Obstructive coronary artery disease diagnostics: machine learning approach for an effective preselection of patients 11.1 Introduction 11.2 In search for additional diagnostic information 11.2.1 Various methods of calcium quantification 11.2.2 Extracoronary atherosclerosis assessment 11.2.3 The development of CAD in coronary arteries is not uniform 11.3 Materials and methods 11.3.1 Supervised machine learning 11.3.2 CCTA examination as a reference 11.3.3 Extended CACS evaluation 11.3.4 Classifier and optimization methods 11.3.5 Study population 11.3.6 Acquisition and diagnostic evaluation of CCTA scans 11.4 Results 11.4.1 Tools used 11.4.2 Study population characteristics 11.4.3 Calcific burden 11.4.4 Model development 11.4.4.1 Number of base models 11.4.4.2 Optimization of hyperparameters 11.4.4.3 Classifier training and validation 11.5 Conclusions 11.5.1 Heterogeneity of coronary arteries atherosclerotic plaque burden 11.5.2 Machine learning model validation 11.5.3 Effectiveness of developed tool References 12 Heart disease prediction using convolutional neural network 12.1 Introduction 12.1.1 Causes 12.1.2 Overload of the cardiac scheme 12.1.3 Coronary artery disease 12.1.4 Heart attack 12.1.5 Cardiomyopathy 12.1.6 Treatment 12.1.7 Stage A 12.1.8 Stage B 12.1.9 Stage C 12.1.10 Stage D 12.1.11 Different imaging test 12.1.12 Echocardiography 12.1.13 Chest X-ray 12.1.14 Computed tomography 12.1.15 Magnetic resonance imaging 12.1.16 Benefits of magnetic resonance imaging 12.1.16.1 Risks associated with the use of magnetic resonance imaging 12.1.17 Limitations for cardiac magnetic resonance imaging 12.1.18 Heart disease classification using convolutional neural network 12.2 Materials 12.3 Methods 12.3.1 Data collection 12.3.2 Direct DICOM images 12.3.3 Merge DICOM images 12.3.4 Preprocessing of the images form the data set 12.3.5 Data fusion 12.3.6 Data normalization and randomization 12.3.7 Model generation 12.3.8 Convolutional neural network 12.3.9 The perceptron 12.3.10 Neural network 12.3.11 Convolutional neural network 12.3.12 Results of heart disease prediction using convolutional neural network 12.4 Conclusion/summary Acknowledgments Author contribution Conflict of interest References 13 Gene polymorphism and the risk of coronary artery disease 13.1 Introduction 13.1.1 Symptoms of coronary artery disease 13.1.2 Risk factors associated with coronary artery disease 13.1.2.1 Age and gender 13.1.2.2 Diet factors 13.1.2.3 Lifestyle factors 13.1.3 Coronary artery disease detection and diagnostics 13.1.3.1 Electrocardiogram 13.1.3.2 Echocardiogram 13.1.3.3 Exercise stress test 13.1.3.4 Nuclear stress test 13.1.3.5 Cardiac catheterization and angiogram 13.1.4 Prevention 13.1.4.1 Modification of behavior 13.1.4.2 Physical activity 13.1.4.3 Diet 13.1.4.4 Alcohol and tobacco 13.1.4.5 Blood pressure lowering 13.1.4.6 Lipid lowering Drugs for clot prevention 13.1.4.7 Antihypertensive and stain therapy 13.1.5 Genetic factor 13.1.5.1 Angiotensin converting enzyme gene 13.1.5.2 IL-10 gene polymorphism 13.1.5.3 Angiotensinogen gene Aim 13.2 Methodology 13.2.1 Literature search 13.2.2 Selection criteria 13.2.3 Extraction of data 13.2.4 Statistical analysis 13.3 Results 13.3.1 Literature search 13.3.2 Quantitative data analysis 13.3.3 Publication bias 13.4 Discussion 13.5 Conclusion References 14 Role of optical coherence tomography in borderline coronary lesions 14.1 Introduction 14.2 Physics of optical coherence tomography 14.3 Imaging technique 14.4 Optical coherence tomography image 14.5 Optical coherence tomography versus intravascular ultrasound 14.6 Optical coherence tomography in borderline lesions 14.6.1 ACS with unclear culprit 14.6.2 Functional significance of stenosis 14.6.3 Vulnerable plaque 14.6.4 MI with no obstructive coronary atherosclerosis 14.6.5 Spontaneous coronary artery dissection 14.6.6 Transplant vasculopathy 14.6.7 Clinical evidence of optical coherence tomography 14.7 Conclusion References Index Back Cover