ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Carbon Nanotube and Graphene Device Physics

دانلود کتاب فیزیک دستگاه نانولوله کربن و گرافن

Carbon Nanotube and Graphene Device Physics

مشخصات کتاب

Carbon Nanotube and Graphene Device Physics

ویرایش:  
نویسندگان: ,   
سری:  
ISBN (شابک) : 0521519055, 9780521519052 
ناشر: Cambridge University Press 
سال نشر: 2011 
تعداد صفحات: 263 
زبان: English  
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 4 مگابایت 

قیمت کتاب (تومان) : 31,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 11


در صورت تبدیل فایل کتاب Carbon Nanotube and Graphene Device Physics به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب فیزیک دستگاه نانولوله کربن و گرافن نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب فیزیک دستگاه نانولوله کربن و گرافن

توضیح خواص و عملکرد دستگاه های نانولوله های کاربردی و کاربردهای مرتبط، این اولین کتاب درسی مقدماتی در این زمینه است. همه مفاهیم اساسی معرفی شده اند تا خوانندگان بدون پیشینه علمی پیشرفته بتوانند تمام ایده ها و نتایج اصلی را دنبال کنند. موضوعات اضافی تحت پوشش شامل ترانزیستورها و اتصالات نانولوله ای و فیزیک پایه گرافن است. مجموعه مسائل در پایان هر فصل به خوانندگان این امکان را می دهد که دانش خود را در مورد مطالب تحت پوشش آزمایش کنند و درک بیشتری از مجموعه مهارت های تحلیلی توسعه یافته در متن بدست آورند. این یک کتاب درسی ایده آل برای دانشجویان ارشد و کارشناسی ارشد است که دروس فیزیک دستگاه های نیمه هادی و نانوالکترونیک را می گذرانند. همچنین یک راهنمای کامل برای خود مطالعه برای مهندسان و محققان دستگاه های حرفه ای است.


توضیحاتی درمورد کتاب به خارجی

Explaining the properties and performance of practical nanotube devices and related applications, this is the first introductory textbook on the subject. All the fundamental concepts are introduced, so that readers without an advanced scientific background can follow all the major ideas and results. Additional topics covered include nanotube transistors and interconnects, and the basic physics of graphene. Problem sets at the end of every chapter allow readers to test their knowledge of the material covered and gain a greater understanding of the analytical skill sets developed in the text. This is an ideal textbook for senior undergraduate and graduate students taking courses in semiconductor device physics and nanoelectronics. It is also a perfect self-study guide for professional device engineers and researchers.



فهرست مطالب

Cover......Page 1
Half-title......Page 3
Series-title......Page 4
Title......Page 5
Copyright......Page 6
Contents......Page 7
Preface......Page 11
1.1 Introduction......Page 13
1.2 An abbreviated zigzag history of CNTs......Page 15
1.3 Synthesis of CNTs......Page 25
Chemical vapor deposition (CVD)......Page 26
Arc discharge......Page 27
1.4 Characterization techniques......Page 28
1.5 What about non-CNTs?......Page 29
2.1 Introduction......Page 31
2.2 Quantum mechanics of electrons in solids......Page 32
2.3 An electron in empty space......Page 33
2.4 An electron in a finite empty solid......Page 35
2.5 An electron in a periodic solid: Kronig--Penney model......Page 38
2.6 Important insights from the Kronig--Penney model......Page 41
2.7 Basic crystal structure of solids......Page 44
2.8 The Bravais lattice......Page 45
Primitive vectors......Page 48
Primitive unit cell......Page 49
2.9 The reciprocal lattice......Page 50
Some properties of the reciprocal lattice......Page 52
An example: the hexagonal lattice......Page 53
2.11 Problem set......Page 54
3.1 Introduction......Page 59
3.2 The direct lattice......Page 62
3.3 The reciprocal lattice......Page 63
3.4 Electronic band structure......Page 64
3.5 Tight-binding energy dispersion......Page 67
Fermi energy......Page 74
3.6 Linear energy dispersion and carrier density......Page 75
3.7 Graphene nanoribbons......Page 79
3.9 Problem set......Page 82
4.1 Introduction......Page 85
4.2 Chirality: a concept to describe nanotubes......Page 86
4.3 The CNT lattice......Page 88
4.4 CNT Brillouin zone......Page 93
4.5 General observations from the Brillouin zone......Page 98
4.6 Tight-binding dispersion of chiral nanotubes......Page 100
4.7 Band structure of armchair nanotubes......Page 102
4.8 Band structure of zigzag nanotubes and the derivation of the bandgap......Page 105
4.9 Limitations of the tight-binding formalism......Page 107
4.10 Summary......Page 109
4.11 Problem set......Page 110
5.1 Introduction......Page 114
5.2 Free-electron density of states in one dimension......Page 115
5.3 Density of states of zigzag nanotubes......Page 117
5.4 Density of states of armchair nanotubes......Page 123
5.5 Density of states of chiral nanotubes and universal density of states for semiconducting CNTs......Page 125
5.6 Group velocity......Page 128
5.7 Effective mass......Page 129
5.8 Carrier density......Page 131
5.9 Summary......Page 136
5.10 Problem set......Page 137
6.1 Introduction......Page 140
6.2 Quantum conductance......Page 141
Additional insights regarding the quantum conductance......Page 144
6.3 Quantum conductance of multi-wall CNTs......Page 146
6.4 Quantum capacitance......Page 151
6.5 Quantum capacitance of graphene......Page 154
6.6 Quantum capacitance of metallic CNTs......Page 156
6.7 Quantum capacitance of semiconducting CNTs......Page 157
6.8 Experimental validation of the quantum capacitance for CNTs......Page 159
6.9 Kinetic inductance of metallic CNTs......Page 160
6.10 From Planck to quantum conductance: an energy-based derivation of conductance......Page 163
6.11 Summary......Page 165
6.12 Problem set......Page 166
7.1 Introduction......Page 169
7.2 Electron scattering and lattice vibrations......Page 170
7.3 Electron mean free path......Page 175
7.4 Single-wall CNT low-field resistance model......Page 181
7.5 Single-wall CNT high-field resistance model and current density......Page 183
7.6 Multi-wall CNT resistance model......Page 186
7.7 Transmission line interconnect model......Page 188
7.8 Lossless CNT transmission line model......Page 194
7.9 Lossy CNT transmission line model......Page 195
7.10 Performance comparison of CNTs and copper interconnects......Page 196
7.11 Summary......Page 198
7.12 Problem set......Page 200
8.1 Introduction......Page 203
8.2 Survey of CNFET device geometries......Page 204
8.3 Surface potential......Page 207
8.4 Ballistic theory of ohmic-contact CNFETs......Page 212
8.5 Ballistic theory of CNFETs including drain optical phonon scattering......Page 218
8.6 Ballistic CNFET performance parameters......Page 221
8.7 Quantum CNFETs......Page 224
8.8 Schottky-barrier ballistic CNFETs......Page 225
8.9 Unipolar CNFETs......Page 235
8.10 Paradigm difference between conventional 2D MOSFETs and ballistic 1D FETs......Page 237
8.11 Summary......Page 239
8.12 Problem set......Page 240
9.1 Introduction......Page 245
9.2 Chemical sensors and biosensors......Page 246
9.3 Probe tips for scanning probe microscopy......Page 248
9.4 Nano-electromechanical systems (NEMS)......Page 249
9.5 Field emission of electrons......Page 250
9.6 Integrated electronics on flexible substrates......Page 252
9.7 Hydrogen storage......Page 254
9.8 Composites......Page 256
9.9 References......Page 257
Index......Page 261




نظرات کاربران