دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
دسته بندی: علم شیمی ویرایش: 1 نویسندگان: Suresh Kumar Kailasa. Chaudhery Mustansar Hussain سری: ISBN (شابک) : 0323983502, 9780323983501 ناشر: Elsevier سال نشر: 2022 تعداد صفحات: 366 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 12 مگابایت
در صورت تبدیل فایل کتاب Carbon Dots in Analytical Chemistry: Detection and Imaging به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب نقاط کربن در شیمی تحلیلی: تشخیص و تصویربرداری نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
نقاط کربن در شیمی تحلیلی: تشخیص و تصویربرداری پیشرفتهای اخیر در زمینه سنتز و خواص نقاط کربن و ادغام آنها با دستگاههای تحلیلی مینیاتوری مختلف برای تشخیص گونههای شیمیایی و تصویربرداری را بررسی میکند. از سلول ها این کتاب به بررسی کاربردهای بالقوه نقاط کربن در شیمی تحلیلی برای میکروبیولوژی بالینی، تجزیه و تحلیل دارویی و تجزیه و تحلیل محیطی اختصاص یافته است. بخشها رویکردها و خواص مصنوعی، آمادهسازی نمونه، تکنیکهای تحلیلی برای تشخیص گونههای شیمیایی، تصویربرداری از مولکولها و سلولها، و ابزارهای تحلیلی برای تجزیه و تحلیل زیستپزشکی و مواد غذایی را پوشش میدهند.
این کتاب ارزشمندی برای دانشمندان تحلیلی و مواد، دانشمندان فیزیکی و شیمی، و مهندسانی خواهد بود که در مورد استفاده از نانومواد کربنی در روشهای تحلیلی خود تحقیق میکنند.</ p>
Carbon Dots in Analytical Chemistry: Detection and Imaging explores recent progress in the field of carbon dots synthesis and properties and their integration with various miniaturized analytical devices for the detection of chemical species and imaging of cells. This book is dedicated to exploring the potential applications of carbon dots in analytical chemistry for clinical microbiology, pharmaceutical analysis and environmental analysis. Sections cover synthetic approaches and properties, sample preparation, analytical techniques for the detection of chemical species, imaging of molecules and cells, and analytical tools for biomedical and food analysis.
The will be a valuable book for analytical and materials scientists, physical and chemical scientists, and engineers investigating the use of carbon nanomaterials in their analytical procedures.
Front Cover Carbon Dots in Analytical Chemistry Copyright Page Contents List of contributors Preface 1 Synthetic strategies toward developing carbon dots via top-down approach 1.1 Carbon dots—introduction 1.1.1 Carbon dots prepared by arc-discharge method 1.1.2 Carbon dots prepared by laser ablation 1.1.3 Carbon dots prepared by electrochemical method 1.1.4 Carbon dots prepared by chemical oxidation method 1.1.5 Carbon dots prepared by ball milling method 1.2 Conclusion References 2 Bottom-up approaches for the preparation of carbon dots 2.1 Introduction 2.2 Bottom-up approaches for the fabrication of CDs 2.2.1 Hydrothermal method 2.2.2 Solvothermal method 2.2.3 Pyrolysis method 2.2.4 Carbonization method 2.2.5 Microwave method 2.3 Conclusion and future perspectives References 3 An overview of optical, physical, biological, and catalytic properties of carbon dots 3.1 Introduction 3.2 Optical properties of CDs 3.2.1 Absorption 3.2.2 Phosphorescence 3.2.3 Photoluminescence 3.2.4 Chemiluminescence 3.2.5 Electrochemical luminescence 3.2.6 Up-conversion luminescence 3.3 Physical properties of CDs 3.3.1 Quantum yield 3.3.2 Crystallinity 3.3.3 Photostability 3.4 Biological properties of CDs 3.4.1 Cytotoxicity 3.5 Catalytic properties 3.6 Effect of doping 3.7 Conclusion and future perspectives References 4 Characterization of carbon dots 4.1 Introduction 4.2 Structure of CDs 4.3 Surface passivation and functionalization of CDs 4.4 Doping in CDs 4.5 Purification of CDs 4.6 Characterization techniques of CDs 4.6.1 UV–vis spectroscopy 4.6.2 PL spectra 4.6.2.1 Quantum yield measurements 4.6.3 FT-IR spectral analysis 4.6.4 Raman spectroscopy 4.6.5 DLS measurements 4.6.6 NMR spectroscopy 4.6.7 MS analysis 4.6.7.1 Inductively coupled plasma-mass spectrometry 4.6.7.2 Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry 4.6.7.3 Electrospray ionization quadrupole time-of-flight tandem mass spectrometry 4.6.8 X-ray photoelectron spectroscopy 4.6.9 Energy-dispersive spectroscopy 4.6.9.1 Microscopic techniques 4.6.10 SEM and HR-TEM analyses 4.6.11 AFM and STM analyses 4.6.12 XRD analysis 4.6.13 Thermogravimetric analysis 4.7 Conclusions References 5 Carbon dots in sample preparation 5.1 Introduction 5.2 Applications of carbon dots in sample preparation 5.2.1 Solid-phase extraction 5.2.2 Dispersive solid-phase extraction 5.2.3 Magnetic solid-phase extraction 5.2.4 Solid-phase microextraction 5.3 Conclusions References 6 Carbon dots in separation science 6.1 Introduction 6.2 Properties of carbon dots related to separation processes 6.3 Applications 6.3.1 Application of carbon dots in magnetic separation 6.3.2 Application of carbon dots in immunomagnetic separation 6.3.3 Application of carbon dots in chromatographic separation 6.3.3.1 Carbon dots for high-performance liquid chromatography 6.3.3.2 Carbon dots for gas chromatography 6.3.4 Application of carbon dots in gel electrophoresis and capillary electrophoresis 6.3.5 Application of carbon dots in sample preparation 6.3.5.1 Carbon dots for solid-phase extraction 6.3.5.2 Carbon dots for magnetic solid-phase extraction 6.3.5.3 Carbon dots for MDSPME 6.4 Conclusion and future prospects Conflict of interest References 7 Carbon dots for electrochemical analytical methods 7.1 Introduction 7.2 Carbon dots: synthesis and properties 7.3 Carbon dots for electrochemical measurements 7.4 Electrochemical sensing for metal and anionic ions using carbon dots–based materials 7.5 Electrochemical sensing for H2O2 using carbon dots–based materials 7.6 Electrochemical sensing for organic-based analytes using carbon dots–based materials 7.7 Advantages of carbon dots–based electrodes 7.8 Conclusion References 8 Carbon dots-based fluorescence spectroscopy for metal ion sensing 8.1 Introduction 8.2 Synthesis of carbon dots 8.3 Metal ions detection 8.4 Carbon dots as fluorescence probe for the detection of biological metal ions 8.5 Carbon dots as fluorescence probe for toxic metal ions 8.6 Carbon dots as fluorescence probe for precious metal ions 8.7 Conclusions References 9 Carbon dots-based fluorescence spectrometry for pesticides sensing 9.1 Introduction 9.2 Carbon dots–based fluorescence spectrometry for pesticides sensing 9.2.1 Sensing of fungicides 9.2.2 Sensing of herbicides 9.2.3 Sensing of insecticides 9.2.4 Sensing of other pesticides 9.3 Conclusions and future perspectives References 10 Carbon dots-based electrochemical sensors 10.1 Introduction 10.2 Properties of graphene quantum dots and carbon quantum dots 10.2.1 Graphene quantum dots 10.2.2 Carbon quantum dots 10.3 Applications to biosensing 10.3.1 Electrochemical sensors and substrate materials in electrochemical sensing 10.3.1.1 Alteration procedure 10.3.1.2 Electrocatalysis function 10.3.1.2.1 Hydrogen peroxide reduction 10.3.1.2.2 Organic redox reaction 10.3.1.2.3 Amino acids 10.3.1.2.4 Heavy metal ions 10.3.2 Carriers for material investigation 10.3.3 Electrochemical operation 10.3.4 Metal ions sensing 10.3.5 Small molecule sensing 10.3.6 Protein detection 10.3.7 DNA/RNA detection 10.4 Conclusions and key challenges to address 10.5 Future signs References 11 Recent advancements of carbon dots in analytical techniques 11.1 Introduction 11.2 Carbon dot–assisted enzyme-linked immunosorbent assay 11.3 Carbon dot–assisted surface-enhanced Raman spectroscopy 11.4 Carbon dot–assisted paper-based analytical devices 11.4.1 Carbon dot-based paper chips 11.4.2 Carbon dot–based microfluidic paper chips 11.5 Carbon dots in chemiluminescence 11.5.1 Nanoparticle-based chemiluminescence 11.5.2 Carbon dots in chemiluminescence 11.6 Carbon dots for pH-responsive fluorescence sensors 11.7 Carbon dot–based nanothermometers to sense temperature 11.8 Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry 11.8.1 Carbon dot-assisted matrix-assisted laser desorption/ionization mass spectrometry for small molecules 11.9 Summary and future perspectives References 12 Carbon dots in hydrogels and their applications 12.1 Introduction 12.2 Preparation of carbon dots composite hydrogel 12.3 Properties of carbon dots composite hydrogel 12.4 Emerging applications of carbon dots composite hydrogel 12.5 Conclusion Acknowledgment References 13 Carbon dots as adsorbents for removal of toxic chemicals 13.1 Introduction 13.2 Synthesis methods of carbon dots 13.3 Purification methods of carbon dots 13.4 Characterization techniques for identification of carbon dots and implication of them for various applications 13.5 Applications of carbon dots 13.5.1 General applications 13.5.2 Carbon dots as adsorbents for toxic chemicals removal 13.5.2.1 Basics of adsorption 13.5.2.2 Recent developments of carbon dots as adsorbent for pollutants removal 13.5.2.3 Adsorption mechanism of carbon dots for pollutants removal 13.5.2.3.1 Organic pollutant adsorptive removal mechanism of carbon dots 13.5.2.3.2 Inorganic pollutant adsorptive removal mechanism of carbon dots 13.6 Conclusion and future perspective Acknowledgments References 14 Heteroatom/metal ion-doped carbon dots for sensing applications 14.1 Introduction 14.2 Synthesis of heteroatom-doped carbon dots 14.3 Dopant 14.4 Single atom doping 14.4.1 Heteroatom/nonmetal doping 14.4.1.1 N-doped carbon dots 14.4.1.2 S-doped carbon dots 14.4.1.3 P-doped carbon dots 14.4.1.4 B-doped carbon dots 14.4.1.5 Halogen-doped carbon dots 14.4.2 Metal atom doping 14.5 Multiatom co-doping 14.5.1 Heteroatom/nonmetal co-doping 14.5.1.1 N-S co-doping 14.5.1.2 N-P co-doping 14.5.1.3 N-B co-doping 14.5.2 Heteroatom-metal co-doping 14.5.3 Metal–metal co-doping 14.6 Properties of heteroatom-doped carbon dots 14.6.1 Optical properties 14.6.2 Electrochemical properties 14.7 Heteroatom-doped carbon dots as sensors 14.7.1 Fluorescent sensors 14.7.1.1 Cations 14.7.1.2 Anions 14.7.1.3 Biological and organic molecules 14.7.1.4 pH 14.7.1.5 Temperature 14.7.2 Electrochemical sensors 14.7.2.1 Cations 14.7.2.2 Biological and organic molecules 14.8 Conclusion and future challenges References 15 Analytical applications of carbon dots in forensics, security, and other related fields 15.1 Forensic science 15.2 Techniques involved in forensic analysis 15.3 Nanoforensics 15.3.1 Carbon quantum dots 15.3.2 Structural design of carbon quantum dots 15.4 Carbon quantum dots: forensic applications 15.4.1 Latent fingerprint enhancement 15.4.2 Anticounterfeit 15.4.3 Molecular sensing 15.4.3.1 Detection of illicit drugs 15.4.3.2 Detection of DNA 15.4.3.3 Detection of explosive compounds 15.4.3.4 Detection of toxic chemicals 15.5 Challenges on the carbon dot-based analytical methods for forensic analysis 15.5.1 Heavy metal ion detection method 15.5.2 Fingerprint detection method 15.5.3 Carbon dot-based material for anticounterfeit identification 15.6 Conclusion References 16 Carbon dots as smart optical sensors 16.1 Introduction 16.2 Fluorescence-based sensing of trace amount of water 16.3 Carbon dots with red emission for dual sensing of In3+ and Pd2+ in water 16.4 Fluorescent carbon nanoparticles for sensing synthetic food colorant 16.5 Concluding remarks References 17 Synthesis of carbon dots from waste materials: analytical applications 17.1 Introduction 17.2 Materials and methodologies 17.2.1 Synthesis of CDs 17.2.1.1 From kitchen and food wastes 17.2.2 Pyrolysis 17.2.3 Microwave-assisted technique 17.2.4 Hydrothermal method 17.2.4.1 From animal wastes 17.2.4.2 From agricultural wastes 17.2.4.3 From plastic wastes 17.2.4.4 From paper wastes 17.3 Characterization 17.3.1 Optical characterization 17.3.2 IR, Raman, XPS, and XRD spectroscopy 17.3.3 Morphology of CDs 17.4 Applications 17.4.1 CDs in drug delivery 17.4.2 CDs as sensing and tracing probes 17.4.3 CDs as anticancer agents 17.4.4 CDs in quenching 17.4.5 CDs in detection 17.4.6 CDs in photocatalysis 17.4.7 CDs in anticounterfeiting ink and film 17.5 Conclusion References 18 Carbon dots as an effective material in enzyme immobilization for sensing applications 18.1 Introduction 18.2 Methods of enzyme immobilization 18.3 Enzyme–carbon dots physiochemical mechanisms: a synergistic effect 18.4 CDs-based enzymatic biosensors 18.4.1 Electrochemical biosensor 18.4.2 Optical biosensor 18.5 Advantages of enzyme immobilization 18.5.1 Enzyme stabilization 18.5.2 Enzyme recovery and reusability 18.5.3 Bioreactor flexibility 18.6 Enzyme immobilized carbon dots for sensing applications 18.6.1 Preparation and characterization of N/CQD/chitosan/GOx 18.6.2 Preparation and characterization of F, N/CQD/laccase 18.7 Current challenges 18.8 Conclusion Acknowledgement References 19 Ultra-small carbon dots for sensing and imaging of chemical species 19.1 Introduction 19.2 Ultra-small CDs for sensing chemical species 19.2.1 Ultra-small CDs for sensing ionic species 19.2.2 Ultra-small CDs for sensing nonionic molecules 19.3 Ultra-small CDs: functionalization and imaging applications 19.3.1 Ultra-small CDs functionalization for imaging applications 19.3.1.1 Ultra-small CDs for bioimaging applications References 20 Carbon dot-based microscopic techniques for cell imaging 20.1 Fluorescence microscopic techniques for carbon dot–based cell imaging 20.2 Carbon dots as fluorescent nanoprobes for cell imaging 20.3 Carbon dots as smart nanoprobes for diverse targeted cell imaging 20.4 Conclusions References 21 Carbon nanomaterials-based diagnostic tools 21.1 Introduction 21.2 Carbon nanotubes 21.2.1 CNTs in lab on chip devices 21.2.2 CNTs in bioimaging 21.2.3 CNTs in point-of-care diagnostics 21.2.4 CNTs in biosensing 21.3 Carbon dots 21.3.1 CDs in LOC devices 21.3.2 CDs in bioimaging 21.3.3 CDs in point-of-care diagnostics 21.3.4 CDs in biosensing 21.4 Other carbon-based nanomaterials 21.4.1 Other carbon-based nanomaterials for LOC devices 21.4.2 Other carbon-based nanomaterials for bioimaging 21.4.3 Other carbon-based nanomaterials for point-of-care diagnostics 21.4.4 Other carbon-based nanomaterials for biosensing 21.5 Conclusion and future perspective References 22 Carbon dots in food analysis 22.1 Introduction 22.2 Analytical applications of carbon dots in food matrix 22.2.1 Detection of pesticides in food 22.2.2 Detection of veterinary drug 22.2.3 Detection of metal ion in food samples 22.2.4 Detection of hazards in food processing 22.3 Summary and trends References 23 Multicolor carbon dots for imaging applications 23.1 Introduction 23.2 Bioimaging 23.3 Quantum yield 23.4 Bioimaging agents for in vivo and in vitro imaging 23.5 Bioimaging applications 23.6 Conclusion and futuristic roadmap Acknowledgment Conflict of interest References 24 Synthesis and applications of carbon dots from waste biomass 24.1 Introduction 24.2 C-dot synthesis from waste biomass 24.3 Methods for the synthesis of C-dots from biomass waste 24.3.1 Pyrolysis 24.3.2 Solvothermal method 24.3.3 Ultrasonic-assisted method 24.3.4 Microwave-assisted method 24.3.5 Hydrothermal carbonization 24.3.6 Other synthesis methods 24.4 Properties of C-dots derived from biomass waste 24.4.1 Structural property 24.4.2 Optical property 24.4.3 Fluorescence property 24.4.4 Upconversion fluorescence property 24.4.5 Cytotoxicity and biocompatibility 24.4.6 Catalytic activity 24.5 Factors affecting properties of C-dots 24.5.1 Thermal impact of raw materials 24.5.2 Effect of synthesis temperature 24.5.3 Effect of reaction time 24.5.4 Effect of pH 24.6 Biosynthesis of CDs from waste biomass 24.6.1 Application in photocatalytic activity 24.6.2 Biodegradable green C-dots used to detect silver 24.6.3 Application in sensing process 24.6.4 Application in solar cells 24.6.5 Application in drug delivery 24.6.6 Application in sensing of pollutant and toxic chemicals in food 24.7 Conclusions and future outlook References 25 White light generation and fabrication of warm light-emitting diodes using carbon nanodots and their composites: a brief... 25.1 Introduction 25.2 White light generation and warm white light-emitting diodes 25.3 Designing white light-emitting diodes with carbon nanodots and their composites 25.4 Applications of white light-emitting diodes in analytical/ biomedical sciences 25.5 Challenges in white light-emitting diode–based carbon nanodots 25.6 Conclusion Acknowledgement References 26 Catalytic applications of carbon dots 26.1 Introduction 26.2 Carbon dot photocatalysts 26.3 Catalytic applications 26.3.1 Photocatalysis in water treatment 26.3.2 Electrocatalysis 26.3.3 Industrial catalysis for fine chemical synthesis 26.3.4 Water splitting and hydrogen evolution 26.3.5 Peroxidase-like catalysis 26.4 Summary and future prospects References Index Back Cover