ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Carbon Capture Technologies for Gas-Turbine-Based Power Plants

دانلود کتاب فن آوری های جذب کربن برای نیروگاه های مبتنی بر توربین گازی

Carbon Capture Technologies for Gas-Turbine-Based Power Plants

مشخصات کتاب

Carbon Capture Technologies for Gas-Turbine-Based Power Plants

دسته بندی: انرژی
ویرایش:  
نویسندگان: , ,   
سری:  
ISBN (شابک) : 0128188685, 9780128188682 
ناشر: Elsevier 
سال نشر: 2022 
تعداد صفحات: 262 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 7 مگابایت 

قیمت کتاب (تومان) : 49,000

در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 3


در صورت تبدیل فایل کتاب Carbon Capture Technologies for Gas-Turbine-Based Power Plants به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب فن آوری های جذب کربن برای نیروگاه های مبتنی بر توربین گازی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی درمورد کتاب به خارجی



فهرست مطالب

Front Cover
Carbon Capture Technologies for Gas-Turbine-Based Power Plants
Copyright Page
Dedication
Contents
Preface
Acknowledgment
1 An introduction to gas turbine systems
	1.1 Introduction
	1.2 Introduction to the gas turbine technology
	1.3 Categories of gas turbines
	1.4 Type of gas turbine
		1.4.1 Single-shaft gas turbine
		1.4.2 Dual-shaft gas turbine with a power turbine
		1.4.3 Triple-shaft gas turbine with a power turbine
		1.4.4 Open and closed thermodynamic cycles of gas turbine
	1.5 Environmental impact
	1.6 Summary
	References
2 Main technologies in CO2 capture
	2.1 Post-combustion capture
		2.1.1 Physical absorption
		2.1.2 Selective exhaust gas recirculation (S-EGR) method
			2.1.2.1 Chemical absorption technology
			2.1.2.2 Physical adsorbent
			2.1.2.3 Chemical adsorbent (amine-based)
	2.2 Pre-combustion capture
		2.2.1 Chemical process
		2.2.2 Membrane
		2.2.3 Hydrogen production technologies
			2.2.3.1 Steam methane reforming
			2.2.3.2 Autothermal reforming
			2.2.3.3 Vacuum pressure swing adsorption cycle
			2.2.3.4 Renewable sources
	2.3 Oxy-fuel combustion capture
		2.3.1 Oxy-combustion classification
	2.4 CO2 Capture technologies comparison
	2.5 Summary
	Reference
3 Oxyturbine power cycles and gas-CCS technologies
	3.1 Semiclosed oxycombustion combined cycle
		3.1.1 Semiclosed oxycombustion combined cycle technologies
	3.2 The COOPERATE cycle
		3.2.1 The COOPERATE cycle technologies
	3.3 The MATIANT cycle
	3.4 The E-MATIANT cycle
	3.5 CC-MATIANT cycle
		3.5.1 CC-METIANT technologies
	3.6 The Graz cycle
		3.6.1 Graz cycle technologies
	3.7 The S-Graz cycle
		3.7.1 The S-Graz cycle technologies
	3.8 The AZEP 100% cycle
		3.8.1 The AZEP 100% cycle technologies
	3.9 The AZEP 85% cycle
	3.10 The ZEITMOP cycle
		3.10.1 ZEITMOP technologies
	3.11 The COOLCEP-S cycle
		3.11.1 COOLCEP technologies
	3.12 The COOLCEP-C cycle
		3.12.1 COOLCEP-C technologies
	3.13 Novel O2/CO2 cycle
		3.13.1 The novel O2/CO2 technologies
	3.14 NetPower cycle
	3.15 Clean energy system cycle
		3.15.1 The clean energy system technologies
	3.16 Natural gas combined cycle
	3.17 The natural gas combined cycle power plant with postcombustion capture
	3.18 Summary
	References
4 Process modelling and performance analysis of the leading oxyturbine cycles
	4.1 Introduction
	4.2 Oxycombustion power cycle theories and calculations
		4.2.1 Thermodynamic concept and equations
			4.2.1.1 Continuity
			4.2.1.2 Energy conservation
			4.2.1.3 Energy quality (second law of thermodynamic)
			4.2.1.4 Thermodynamic cycles
		4.2.2 Exergy equations for the oxyfuel combustion cycle
		4.2.3 Exergy destruction equations
		4.2.4 Equation of state for gas turbine and steam turbine
	4.3 Modelling and simulation
		4.3.1 Plant simulation with a numerical approach
		4.3.2 Aspen Plus pros and cons
		4.3.3 Modelling equipment in Aspen Plus
			4.3.3.1 Distillation column
			4.3.3.2 Stripper (or desorption)
			4.3.3.3 Absorption (opposite of striping)
			4.3.3.4 Separator blocks in Aspen Plus
		4.3.4 MATLAB code link with Aspen Plus
	4.4 Oxy combustion cycles modelling and simulation
		4.4.1 The semiclosed oxycombustion combined cycle cycle modelling and analysis
		4.4.2 The COOPERATE cycle modelling and analysis
		4.4.3 The E-MATIANT cycle modelling and analysis
		4.4.4 The CC_MATIANT cycle modelling and analysis
		4.4.5 The Graz cycle modelling and analysis
		4.4.6 The S-Graz cycle modelling and analysis
		4.4.7 The AZEP 100% cycle modelling and analysis
		4.4.8 The ZEITMOP cycle modelling and analysis
		4.4.9 The cool clean efficient power-s cycle modelling and analysis
		4.4.10 The cool clean efficient power-c cycle modelling and analysis
		4.4.11 The Novel O2/CO2 modelling and analysis
		4.4.12 The NetPower cycle modelling and analysis
		4.4.13 The S-CES cycle modelling and analysis
	4.5 Exergy analysis of leading oxycombustion cycles
		4.5.1 The semiclosed oxycombustion combined cycle modelling and analysis
		4.5.2 The COOPERATE cycle modelling and analysis
		4.5.3 The E-MATIANT cycle modelling and analysis
		4.5.4 The CC_MATIANT cycle modelling and analysis
		4.5.5 The Graz cycle modelling and analysis
		4.5.6 The S-Graz cycle modelling and analysis
		4.5.7 The AZEP 100% cycle modelling and analysis
		4.5.8 The ZEITMOP cycle modelling and analysis
		4.5.9 The cool clean efficient power-S (COOLCEP-S) cycle modelling and analysis
		4.5.10 The cool clean efficient power-C (COOLCEP-C) cycle modelling and analysis
		4.5.11 The Novel O2/CO2 modelling and analysis
		4.5.12 The NetPower cycle modelling and analysis
		4.5.13 The S-CES cycle modelling and analysis
	4.6 Summary
	References
5 Design characteristics of oxyfuel combustor, heat exchanger network and turbomachinery
	5.1 Introduction
	5.2 Conventional combustors
	5.3 Oxyfuel combustor design
		5.3.1 Oxyfuel combustor consideration
		5.3.2 Oxyfuel combustor operating points
		5.3.3 Oxyfuel combustor type selection and full schematic
		5.3.4 Oxyfuel combustor air distribution
		5.3.5 Oxyfuel combustor diffuser
		5.3.6 Oxyfuel swirler
		5.3.7 Oxyfuel combustor recirculation zone
		5.3.8 Oxyfuel holes
		5.3.9 Oxyfuel injector
		5.3.10 Oxyfuel combustor schematic
	5.4 Oxyfuel combustor modelling
		5.4.1 Oxyfuel combustor profile design
		5.4.2 Oxyfuel combustor comparison with air-fired combustor
	5.5 Oxyfuel combustor influence on turbomachinery
		5.5.1 The turbine fluid composition influence on the feed inlet volume rate and on the turbine enthalpy drop
		5.5.2 The compressor–turbine matching
		5.5.3 Blade cooling
			5.5.3.1 Effect of composition
			5.5.3.2 Effect of pressure-ratio
	5.6 Oxyfuel heat exchanger network
	5.7 Summary
	References
6 Oxygen production and air separation units
	6.1 Cryogenic air separation unit
		6.1.1 Pilot scale
		6.1.2 Air separation unit development
	6.2 Noncryogenic air separation unit
		6.2.1 Adsorption
		6.2.2 Pressure swing adsorption
		6.2.3 Vacuum pressure swing adsorption
		6.2.4 Chemical processes
		6.2.5 Polymeric membranes
		6.2.6 Ion transport membrane
		6.2.7 Chemical looping combustion
	6.3 CO2 compression and purification unit
		6.3.1 Flue gas compression and drying
		6.3.2 Partial condensation
		6.3.3 Distillation
		6.3.4 CO2 final product compressor
	6.4 Summary
	References
7 Technoeconomic, risk analysis and technology readiness level in oxyturbine power cycles
	7.1 Introduction
	7.2 Turbine inlet temperature comparison of oxycombustion cycles
	7.3 Turbine outlet temperature comparison of oxycombustion cycles
	7.4 Combustion outlet pressure comparison of oxycombustion cycles
	7.5 Exergy and thermal efficiency comparison of oxycombustion cycles
	7.6 CO2/kWh for storage comparison of oxycombustion cycles
	7.7 Technology readiness level
		7.7.1 Combustion technology readiness level
		7.7.2 CO2 compression and purification unit technology readiness level
		7.7.3 SCOCC-CC technology readiness level
		7.7.4 Graze cycle technology readiness level
		7.7.5 CES technology readiness level
		7.7.6 NetPower technology readiness level
	7.8 Performance analysis
	7.9 Technoeconomic analysis of oxycombustion cycles
		7.9.1 Cost rate
		7.9.2 Exergoeconomics
		7.9.3 Levellised cost of electricity
	7.10 Radar chart for comparison of the oxycombustion cycles
	7.11 Summary
	Reference
8 Conclusions and future works
	8.1 Conclusions
	8.2 Future work and critical appraisal
Index
Back Cover




نظرات کاربران