دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: نویسندگان: Sorrentino F., Damidot D., Fentiman C. سری: Science des matériaux / Materials ISBN (شابک) : 9782759824809 ناشر: EDP Sciences سال نشر: 2021 تعداد صفحات: 349 [351] زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 14 Mb
در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد
در صورت تبدیل فایل کتاب CaO-SiO2-Al2O3-Fe Oxides Chemical System: Description and Applications به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب سیستم شیمیایی اکسیدهای CaO-SiO2-Al2O3-Fe: توضیحات و کاربردها نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این کتاب نتایج تحقیقات اختصاص داده شده به مطالعات مجموعه های فازی در سیستم شیمیایی اکسیدهای CaO-SiO2-Al2O3-Fe، پایداری آنها و تکامل آنها در محیط ما (دما، فشار) را شرح می دهد و در مورد آنها اظهار نظر می کند. هدف آن این است که یک پشتیبان تحقیقاتی باشد، نه تنها برای محققان و مهندسان توسعه، بلکه به طور کلی برای سایر علاقمندان به علوم مواد. کتاب در دو بخش تقسیم شده است؛ اولین مورد به توصیف \"سیستم\" با استفاده از نمودارهای فاز اختصاص دارد. دومی به بررسی خواص و کاربردهای برخی از مواد معدنی می پردازد که در کاربردهای صنعتی و تجاری گسترده هستند. بسیاری از کارهای ارائه شده در این کتاب کاملاً اصیل هستند و با تحقیقات انجام شده توسط فرانسوا سورنتینو از زمان او در بخش شیمی دانشگاه آبردین در اوایل دهه 1970 تا سال های اخیر که او علاقه خود را به این رشته از سر گرفت مطابقت دارد. تحقیقات معدنی، به ویژه مربوط به سنتز سیلیکات های کلسیم و آلومینات های کلسیم، و ساخت صنعتی آنها.
This book describes and comments on the results of research devoted to the studies of phase assemblages in the CaO-SiO2-Al2O3-Fe oxides chemical system, their stability and their evolution in our environment (temperature, pressure). Its aim is to be a research support, not only for researchers and development engineers but also more generally for others interested in materials sciences. The book is divided in two parts; the first devoted to a description of \'the system\' using phase diagrams. The second explores the properties and uses of some of the minerals that are in widespread industrial and commercial use. Much of the work presented in this book is fully original and corresponds to the research undertaken by François Sorrentino from his time at the chemistry department of the University of Aberdeen during the early 1970\'s, to recent years when he has resumed his interest in mineral research, particularly related to the synthesis of calcium silicates and calcium aluminates, and their industrial manufacture.
Cover Half Title CaO–SiO2–Al2O3–Fe Oxides Chemical System: Description and Applications Copyright Preface Aim of the Book Summary of Part I – Description of the CaO–SiO2–Al2O3–Fe Oxides Chemical System Summary of Part II – Applications of the CaO–SiO2–Al2O3–Fe Oxides Chemical System Acknowledgement Contents Part I: Descriptions of the CaO–SiO2–Al2O3–Fe Oxides Chemical System 1. One-Component Chemical Systems: CaO, SiO2, Al2O3 and Fe Oxides 1.1 CaO 1.1.1 Introduction 1.1.2 Mineralogy, Structure and Stability 1.1.3 Properties and Applications 1.1.3.1 First Level of Applications 1.1.3.2 Second Level of Application 1.1.3.3 End Level of Applications 1.2 SiO2 1.2.1 Introduction 1.2.2 Mineralogy 1.2.3 Structure and Stability 1.2.4 Properties and Applications 1.2.4.1 First Level of Applications 1.2.4.2 Second Level of Application 1.2.4.3 End Level of Applications 1.3 Al2O3 1.3.1 Introduction 1.3.2 Mineralogy 1.3.3 Structure and Stability 1.3.4 Properties and Applications 1.3.4.1 First Level of Applications 1.3.4.2 Second Level of Applications 1.4 Fe Oxides 2. Binary Chemical Systems 2.1 CaO–SiO2 system 2.1.1 Introduction 2.1.2 Mineralogy 2.1.3 Structure, Polymorphism and Solid Solution 2.1.3.1 Ca3SiO5 (C3S) 2.1.3.1.1 Structure and Polymorphism 2.1.3.1.2 Solid Solution 2.1.3.2 Ca2SiO4 (C2S) 2.1.3.2.1 Structure and Polymorphism 2.1.3.2.2 Solid Solutions 2.1.3.3 Ca3Si2O5 (C3S2) 2.1.3.3.1 Structure and Polymorphism 2.1.3.4 CaSiO3 (CS) 2.1.3.4.1 Structure and Polymorphism 2.1.3.4.2 Solid Solutions 2.1.4 Stability and Phase Diagram of CaO–SiO2 System 2.1.4.1 Experimental Phase Diagram 2.1.4.2 Thermodynamic Approach of the Phase Diagram 2.1.5 Synthesis of Calcium Silicates 2.1.5.1 General Features 2.1.5.2 Direct or Solid-State Sintering 2.1.5.3 Indirect Synthesis 2.1.5.3.1 Coprecipitation of Calcium Salt 2.1.5.3.2 Dehydration of a Synthetic Hydrate 2.1.5.3.3 Polyacrylamide Route 2.1.5.4 Sol–gel Processing Method 2.1.5.5 The Pechini Method 2.1.5.6 Modified Pechini Process 2.1.5.7 Self-Propagating Combustion Synthesis 2.1.5.8 Mastering the Crystallisation 2.2 Al2O3–SiO2 System 2.2.1 Introduction 2.2.2 Mineralogy 2.2.3 Structure, Polymorphism and Solid Solutions 2.2.3.1 Structure and Polymorphism 2.2.3.1.1 General Characteristics 2.2.3.1.2 Kyanite 2.2.3.1.3 Andalusite 2.2.3.1.4 Sillimanite 2.2.3.1.5 Metakaolin 2.2.3.1.6 Mullite/Sillimanite Solid-Solutions 2.2.3.2 Structure of Liquid and Glass – Transition from Liquid to Solid 2.2.4 Stability and Phase Diagram 2.2.4.1 At Atmospheric Pressure 2.2.4.1.1 Stability in Presence of Liquid 2.2.4.1.2 Immiscibility Gap 2.2.4.1.3 Thermodynamic Modelling 2.2.4.2 At High Pressure 2.2.5 Synthesis of Alumino–Silicates 2.2.5.1 Synthesis Depending Mainly on the Starting Materials 2.2.5.2 Synthesis Dependent Mainly on the Process 2.3 Al2O3–Fe Oxides System 2.3.1 Introduction 2.3.2 Mineralogy 2.3.3 Structure, Polymorphism and Solid Solution 2.3.4 Stability and Phase Diagram 2.3.5 Synthesis of Iron Aluminates 2.4 CaO–Al2O3 System 2.4.1 Introduction 2.4.2 Mineralogy 2.4.3 Structure, Polymorphism and Solid Solution 2.4.3.1 Structure and Polymorphism 2.4.3.1.1 Ca3Al2O6 2.4.3.1.2 Ca12Al14O33 2.4.3.1.3 Ca2Al2O7 2.4.3.1.4 Ca5Al6O13 2.4.3.1.5 CaAl2O4 2.4.3.1.6 CaAl4O7 2.4.3.1.7 CaAl12O19 2.4.3.2 Solid Solutions 2.4.3.2.1 Ca3Al2O6 2.4.3.2.2 Ca12Al14O33 2.4.3.2.3 CaAl2O4 2.4.3.2.4 CaAl4O7 2.4.3.2.5 CaAl12O19 2.4.3.3 Structure of Liquid, Glass and Transition from Liquid to Glass and Crystals 2.4.4 Stability and Phase Diagram 2.4.5 Synthesis of Calcium Aluminates 2.4.5.1 Introduction 2.4.5.2 Direct or Solid-State Synthesis 2.4.5.3 Indirect Synthesis 2.4.5.3.1 Coprecipitation of Calcium and Aluminium Salt (Nitrate or Oxalate) 2.4.5.3.2 Dehydration of Synthetic Hydrates 2.4.5.3.3 Sol–gel Method 2.4.5.3.4 The Pechini Method 2.4.5.3.5 Self-Propagating Combustion Synthesis 2.4.5.4 Special Process 2.4.5.4.1 Crystallisation from the Melt, Devitrification of Glass, Single Crystal Synthesis 2.4.5.4.2 Ion Exchange 2.4.5.4.3 Synthesis of Special Aluminates 2.5 SiO2–Fe Oxides System 2.5.1 Introduction 2.5.2 Mineralogy 2.5.2.1 Fayalite (Fe22+SiO4) 2.5.2.2 Ferrosilite (Fe2+SiO3) 2.5.2.3 Laihunite (Fe2+Fe3+2Si2O8) 2.5.2.4 Iscorite (Fe52+Fe23+SiO10) 2.5.2.5 Skyagite (Fe32+Fe23+Si3O12) 2.5.3 Structure, Polymorphism and Solid Solution 2.5.3.1 Fe2SiO4 (Fayalite) 2.5.3.2 Fe2+SiO3 (Ferrosilite) 2.5.3.3 Fe2+Fe3+2Si2O8 (Laihunite) 2.5.3.4 Fe52+Fe23+SiO10 (Iscorite) 2.5.3.5 Fe32+Fe23+Si3O12 (Skyagite) 2.5.4 Liquid FeO–Fe2O3–SiO2 2.5.5 Stability and Phase Diagram of the FeO–Fe2O3–SiO2 System 2.5.6 Synthesis of Iron Silicates 2.5.6.1 Fayalite 2.5.6.2 Ferrosilite 2.5.6.3 Glass Formation 2.6 CaO–Fe Oxides System 2.6.1 Introduction 2.6.2 Mineralogy 2.6.3 Structure, Polymorphism and Solid-Solutions 2.6.3.1 Ca2Fe2O5 (C2F) 2.6.3.2 CaFe2O4 (CF) 2.6.3.3 CaFe4O7 (CF2) 2.6.3.4 Compounds of the CaO–FeO–Fe2O3 System 2.6.4 Stability and Phase Diagram 2.6.4.1 Solidus in the System CaO–FeO–Fe2O3 2.6.4.2 CaO–Fe2O3 System 2.6.4.3 CaO–FeO System 2.6.4.4 Liquidus of the Ternary CaO–FeO–Fe2O3 System 2.6.5 Synthesis of Calcium Ferrite 3. Ternary Chemical Systems 3.1 General Introduction 3.2 CaO–Al2O3–SiO2 System 3.2.1 Ternary Constituents of the CaO–Al2O3–SiO2 System 3.2.2 Mineralogy 3.2.2.1 Anorthite (CaAl2Si2O8) 3.2.2.2 Gehlenite (Ca2Al2SiO6) 3.2.2.3 Grossularite (Ca3Al6Si3O12) 3.2.2.4 Calcium Tschermack's Molecule (CaAl2SiO6) 3.2.2.5 Kushiroite (CaAlSiO6) 3.2.2.6 Yoshiokaite (Ca7.3Al15SiO32) 3.2.2.7 Zeolitic Compounds 3.2.3 Structure and Solid Solutions 3.2.3.1 Anorthite (CaAl2Si2O8) 3.2.3.2 Gehlenite (Ca2Al2SiO6) (LIS 1981) 3.2.3.3 Grossularite (Ca3Al6Si3O12) 3.2.3.4 Calcium Tschermack's Molecule (CaAl2SiO6) 3.2.4 Stability and Phases Diagrams (At One Atmosphere) 3.2.4.1 Solidus 3.2.4.2 Liquidus 3.2.4.3 Structure of Liquid 3.2.4.4 Viscosity 3.2.4.5 Structure of Glass 3.2.4.6 Crystallisation from Melts and Glass 3.2.5 Compounds Obtained in Special Conditions 3.2.5.1 Yoshiokaite (Ca7.3Al15SiO32) 3.2.5.2 Ca3Al6Si2O14 (C3A3S2=C2AS+CA2) 3.2.5.3 Ca2AlSiO5.5 3.2.6 Stability Relative to Temperature or Pressure and Both 3.2.6.1 CaAl2Si2O8 (Anorthite) 3.2.6.2 Ca2Al2SiO6 (Gehlenite) 3.2.6.3 Ca3Al6Si3O12 (Grossularite) 3.2.6.4 CaAl2SiO6 (Ca Tschermack's Molecule) 3.2.7 Thermodynamic Models 3.2.8 Synthesis of Calcium Silicoaluminate 3.2.8.1 CaAl2Si2O8 (Anorthite) 3.2.8.2 Ca2Al2SiO6 (Gehlenite) 3.2.8.3 Ca3Al6Si3O12 (Grossularite) 3.2.8.4 Calcium Tschermack's Molecule 3.2.8.5 C3A3S 3.2.8.6 Ca1.82Al3.64Si0.36O8 3.2.8.7 Ca2AlSiO5.5 3.3 Al2O3–SiO2–Fe Oxides 3.3.1 Introduction 3.3.2 Mineralogy 3.3.2.1 Almandine (Fe2+3Al2Si3O12) 3.3.2.2 Sekaninaite (Fe2+2Al4(SiO2)5) Structure and Solid Solution Almandine (Fe2+3Al2Si3O12) Sekaninaite Stability and Phase Diagram Synthesis 3.4 CaO–SiO2–Fe Oxides 3.4.1 Introduction 3.4.2 Mineralogy 3.4.2.1 Hedenbergite 3.4.2.2 Andradite 3.4.2.3 Kirschsteinite 3.4.2.4 Calcic-Fayalite 3.4.2.5 Iron-Wollastonite 3.4.2.6 SFC ss 3.4.3 Structure and Solid Solution 3.4.3.1 Hedenbergite 3.4.3.2 Andradite 3.4.3.3 Calcic-Fayalite 3.4.3.4 Iron-Åkermanite 3.4.3.5 Iron-Gehlenite 3.4.3.6 SFC ss 3.4.4 Stability and Phase Diagrams in Air 3.4.4.1 Solidus in the CaO–SiO2–Fe2O3 System in Air 3.4.4.2 Liquidus in the CaO–SiO2–Fe2O3 System 3.4.4.3 'Binary' Systems CaO.SiO2 Fe2O3 in Air 3.4.4.4 CaSiO3Ca2–Fe2O6 System 3.4.4.5 CaSiO2–FeO1.5 System 3.4.4.6 Ca2SiO4–Ca2Fe2O5 System 3.4.4.7 Ca4Si3O10–CaFe6O10 System 3.4.4.8 Ternary CaO–SiO2–Fe2O3 System in Air 3.4.5 Stablity and Phase Diagram in the CaO–SiO2–FeO System 3.4.5.1 Solidus in the CaO–SiO2–FeO System 3.4.5.2 Liquidus in the System CaO–SiO2–FeO (in Equilibrium with Metallic Iron) 3.4.5.2.1 CaSiO3–FeSiO3 Pseudo Binary System 3.4.5.2.2 Ca2SiO4–Fe2SiO4 Pseudo Binary System 3.4.5.2.3 CaSiO3–FeO Pseudo Binary System 3.4.5.2.4 Ca2SiO4–FeO Pseudo Binary System 3.4.5.3 Ternary CaO–SiO2–FeO System 3.4.6 CaO–SiO2–FeOx System at Various Oxygen Pressures 3.4.6.1 Liquidus Lines 3.4.6.2 Magnetite 3.4.6.3 Wüstite 3.4.7 Model 3.4.8 Preparation and Synthesis 3.4.8.1 Sintering 3.4.8.2 Sol Gel 3.4.8.3 Hydrothermal Reaction 3.4.8.4 Devitrification of Glass 3.5 CaO–Al2O3–Fe Oxides 3.5.1 Introduction 3.5.2 Mineralogy 3.5.2.1 Brownmillerite – Ca4Al2Fe2O10 (C4AF) 3.5.3 Structure and Solid Solutions 3.5.3.1 Ca3Al2xFe2(1–x)O6 (C3AxF1–x) 3.5.3.2 Ca12Al14xFe14(1–x)O33 (C12[AxF1–x]7) 3.5.3.3 CaAl2xFe2(1–x)O4 (CAxF1–x) 3.5.3.4 Ca4Al2xFe2(1–x)O10 (C2AxF(1–x)) 3.5.3.5 CaAl4xFe4(1–x)O7, C[AxF1–x]2 3.5.3.6 CaAl12xFe12(1–x)O19, C[AxF1–x]6 3.5.3.7 Ca[Al2xFe2(1–x)]3O10, C[AxF(1–x)]3 (T Phase or AFC) 3.5.4 Stability and Phase Diagrams 3.5.4.1 Solidus in Air 3.5.4.2 Liquidus in Air 3.5.5 Liquidus in Reducing Atmosphere 3.5.6 Model of the System 3.5.7 Formation and Synthesis 4. Quaternary Chemical Systems 4.1 Introduction 4.1.1 Principle of Phase Equilibrium in a Quaternary System 4.1.1.1 Regular Tetrahedron 4.1.1.2 Perspective of the Liquidus in the System CaO–SiO2–Al2O3–Fe Oxides 4.1.1.3 Construction of a Flowchart 4.1.1.4 Thermodynamic Modelling 4.1.1.4.1 Principle of Phase Equilibrium Calculation 4.1.1.4.2 Example of Phase Equilibrium Calculation 4.2 CaO–SiO2–Al2O3–Fe2O3 System in Air 4.2.1 Quaternary Constituents of the CaO–SiO2–Al2O3–Fe Oxides System 4.2.2 Mineralogy 4.2.2.1 Esseneite 4.2.2.2 Garnet 4.2.2.3 Q Phase 4.2.2.4 Iron Gehlenite 4.2.2.5 SFCA 4.2.2.6 Spinel 4.2.2.7 Ca [Alx Fe(3-x)]2 O10 (T Phase) 4.2.2.8 Phase X 4.2.3 Mineralogy Structure Stability 4.2.3.1 Introduction 4.2.3.2 Solidus in the CaO–SiO2–Al2O3–Fe2O3 System in Air 4.2.3.3 Liquidus in the CaO–SiO2–Al2O3–Fe2O3 System 4.2.3.4 Sections and Joins 4.2.3.4.1 CaSiO3–Al2O3–Fe2O3 Join (Huck 1974) 4.2.3.4.2 (Ca3Al2Si3O12)–(Ca3Fe3+2Si3O12) Join (Grossularite–Andradite Join) 4.2.3.4.3 Stability Relations on the (CaFe3+2SiO6)–(CaAl2SiO6) or FTS–CATS Join 4.2.3.4.4 Ca2Al2O5–Ca2Fe2O5–SiO2 Join 4.2.3.4.5 Section at 10% Fe2O3 4.2.3.4.6 Section at 16.5% Fe2O3 4.2.3.4.7 Section at 20% Fe2O3 4.2.3.4.8 Perspective of the Liquidus in the CaO–SiO2–Al2O3–Fe2O3 System 4.2.4 Formation and Synthesis 4.3 CaO–Al2O3–SiO2–FeO System 4.3.1 Introduction 4.3.2 Ternary Systems Located Within the CaO, Al2O3, SiO2, FeO Tetrahedron 4.3.2.1 SiO2–Anorthite–FeO Join (Red Plane in Figure 4.12) 4.3.2.2 CaSiO3–Anorthite–FeO Join (Green Plane in Figure 4.12) 4.3.2.3 Anorthite–Al2O3–FeO Join (Blue Plane on Figure 4.12) 4.3.2.4 Gehlenite–Anorthite–FeO Join (Orange Plane on Figure 4.12) 4.3.2.5 CaSiO3–Gehlenite–FeO Join (Pink Plane on Figure 4.12) 4.3.2.6 2CaO.SiO2–Gehlenite–FeO Join (Brown Plane on Figure 4.12) 4.3.3 Binary Systems 4.3.4 Crystallized Solids 4.3.5 Univariant Lines and Quaternary Invariant Points 4.3.6 2CaO.SiO2–CaO.SiO2–Gehlenite–FeO Quaternary System 5. Quinary Chemical Systems 5.1 Introduction – Presentation of Quinary Data 5.2 CaO–SiO2–Al2O3–FeO–Fe2O3 System 5.2.1 Stability and Phase Diagrams 5.2.2 Conclusions References Part I Part II: Applications of the CaO–SiO2–Al2O3–Fe Oxides Chemical System 6. Applications to Hydraulic Binders 6.1 General Introduction 6.2 Portland Cements (PC) 6.2.1 Characteristics 6.2.1.1 Introduction 6.2.1.2 Identification of Clinker Phases 6.2.1.3 Production of Clinker 6.2.1.3.1 Raw Mix Design 6.2.1.3.2 Clinkering Reactions 6.2.1.3.3 Thermal Balance 6.2.2 PC Applications 6.2.2.1 Introduction 6.2.2.2 Hydration 6.2.2.2.1 Hydration of Portland Cement 6.2.2.2.2 Hydration of C3S 6.2.2.2.3 Hydration of C2S 6.2.2.2.4 Hydration of C3A 6.2.2.2.5 Hydration of Calcium Aluminoferrite 6.2.2.3 Properties 6.2.2.4 Understanding of the Measured Properties 6.2.3 Conclusions – Prediction of the Properties 6.3 Calcium Aluminate Cements (CAC) 6.3.1 CAC Characteristics 6.3.1.1 Introduction 6.3.1.2 Identification Clinker Phases of Iron-Rich Calcium Aluminous Cement 6.3.1.3 Percentage of Clinker Phases 6.3.1.4 Raw Mix Design and Formation of CAC 6.3.1.5 Process and Thermal Balance 6.3.2 CAC Applications 6.3.2.1 Introduction 6.3.2.2 Hydration of Industrial Cements 6.3.2.3 Properties 6.4 Special Cements 6.4.1 Fast-Setting Cements 6.4.1.1 Introduction 6.4.1.2 Flash-Setting Cements (Setting Time Less Than 2 min) 6.4.1.3 Very Fast Setting Cements (Setting Time Between 5 and 10 min) 6.4.1.4 Cement with a Fast Setting (Setting Time Between 20 and 80 min) 6.4.2 Geopolymers 6.4.2.1 Introduction 6.4.2.2 Structure of Geopolymer 6.4.2.3 Geopolymer Synthesis 6.4.2.4 Geopolymer Application 6.4.3 Oil Well Cements 6.4.3.1 Introduction 6.4.3.2 Characterization of Oil Well Cement Utilisation 6.4.3.3 Class G and H Oil Well Cements 6.4.3.4 Understanding the Mechanism of Hydration 6.4.4 Expansive Cement 6.4.4.1 Introduction – Mechanism of Expansion 6.4.4.2 Expansive Cements Based on Portland Cements 6.4.4.3 Expansive Cements Based on Calcium Oxide Hydration 6.4.5 Dental Cements 6.4.5.1 Introduction 6.4.5.2 The Main Classes of Dental Cements 6.4.5.2.1 Phosphate Cements 6.4.5.2.2 Silicophosphate Cements 6.4.5.2.3 Phenolates Based Cements 6.4.5.2.4 EBA (Ethoxy Benzoic Acid) and Other Chelate Cements 6.4.5.2.5 Calcium Hydroxide Chelate Cements 6.4.5.2.6 Polycarboxylate Based Cement 6.4.5.2.7 Acrylic Resin Cements 6.4.5.2.8 Dimethacrylate Cements 6.4.5.2.9 Glass Ionomer Cements 6.4.5.2.10 MTA (Mineral Trioxide Aggregates) 6.4.5.2.10.1 Introduction 6.4.5.2.10.2 Characteristics of MTA 6.4.5.2.10.3 From MTA to C3S 6.4.6 Glass Cements 7. Application to Metal Refining 7.1 General Introduction 7.2 Slags from Iron and Steel Industry 7.2.1 Blast Furnace Slags (BFS) 7.2.1.1 Introduction 7.2.1.2 Agglomeration 7.2.1.2.1 Characteristics of the Agglomerates 7.2.1.2.2 Mechanism of Agglomerates Formation 7.2.1.3 Properties and Formation of BF Slags 7.2.1.3.1 Blast Furnace Slag Processing: High Temperature Formation 7.2.1.3.2 Blast Furnace Slag Processing: Cooling 7.2.2 Converter Slags (Basic Oxygen Process or LD Processing) 7.2.2.1 BOP Processing 7.2.2.2 Modification of the Composition of BOP Slag by Addition of Alumina (Bauxite) 7.2.3 EAF Slags: High Carbon Steel 7.2.4 Ladle Slag (Secondary Metallurgy) – Stainless – High Alloy Steel Production 7.2.5 Refining Under Reducing Slag 7.2.5.1 Desulfurization Agent: Case of LDSF 7.3 Formation and Properties of Liquid Slags 7.4 Slags from Non Ferrous Industry 7.4.1 Copper Slag 7.4.2 Silico-Manganese Slag 8. Application to Refractory Materials 8.1 Introduction 8.2 Raw Materials Based on Al2O3 and SiO2 8.2.1 Natural Raw Materials 8.2.2 Synthetic Raw Material 8.3 Applying Refractory Materials 8.3.1 Brick and Monolithic Refractories 8.3.1.1 Silica Bricks 8.3.1.2 Alumina–Silica Bricks 8.3.1.3 Fireclay Bricks 8.3.1.4 High Alumina Bricks 8.3.1.5 Monolithic Refractories 8.3.2 Refractory Cement and Mortar 8.3.2.1 Manufacture of Low-Iron Calcium Aluminate Cements (Low-Iron CAC) 8.3.2.2 Hydration of Low-Iron Calcium Aluminate Cement 8.3.2.3 Relationship of Hydration Reaction to Castable Properties 8.4 Refractories Consuming Industry 8.4.1 Iron and Steel Industry 8.4.2 Non-Ferrous Metal Industry 8.4.3 Cement Industry 8.4.4 Whiteware, Traditional Ceramic Industry 8.4.5 High-Tech Ceramic Industry 8.4.6 Glass Industry 9. Application of the Glassy Products 9.1 Introduction 9.2 Structure of Glass 9.3 Classification of Glass Products Containing CaO, Al2O3, SiO2 and Fe Oxides 9.4 Products, Chemistry and Process 9.4.1 High Silica Glass – Vycor Glass 9.4.2 Soda-Lime Glass 9.4.2.1 Container Glass 9.4.2.2 Flat Glass 9.4.3 Sodium Borosilicate – Glass Fibres 9.4.4 Aluminosilicate Glass 9.4.5 Special Applications 9.4.5.1 Opal Glasses 9.4.5.2 Glass Ceramics 9.4.5.3 Glazes Enamels, Frits 9.4.5.4 Optical Glass 9.4.5.5 Microelectronics in the Information Processing Industry 10. Application of Ceramic Products 10.1 Introduction to Ceramics 10.2 Structure of Ceramics Processing of Manufacture Shaping Physico-Chemical Changes During Firing 10.3 Classification of Ceramic Products Containing CaO, SiO2, Al2O3 and Fe Oxides 10.3.1 Introduction 10.3.2 Traditional Ceramics 10.3.2.1 Pottery, Bricks and Roof Tiles 10.3.2.2 Earthenware, Faience and Majolica 10.3.2.3 Stoneware for Domestic Use and Sewerage for Chemo-Technique Use 10.3.2.4 Porcelain 10.3.2.4.1 Production of Porcelain 10.3.2.4.2 Properties and Use of Porcelain 10.3.2.4.3 Bone China 10.3.2.5 Vitreous China 10.3.2.5.1 Tableware Application 10.3.2.5.2 Sanitaryware (Vitreous China) 10.3.2.6 Glazes, Glaze Frits, Fluxes, Colour Stains 10.3.3 Ceramics in the Construction Sector Ceramics 10.3.3.1 Vitrified Clay Pipes 10.3.3.2 Expanded Clay Aggregates 10.3.3.3 Refractory Products (See Chapter 8) 10.3.3.4 Wall and Floor Tiles 10.3.4 High Technology Ceramics 10.3.4.1 Electrical Porcelain 10.3.4.2 Inorganic Abrasive 10.3.4.3 Chemo-Technical Stoneware 11. Application as Fillers 11.1 General Introduction 11.2 Mono-Component 11.2.1 Calcium Oxide 11.2.1.1 Lime 11.2.1.2 Limestone 11.2.2 SiO2 11.2.2.1 Silica 11.2.2.2 Silica Fume 11.2.3 Alumina 11.2.4 Fe Oxides 11.3 Multi-Component By-Products from Industrial Process 11.3.1 Slags 11.3.1.1 Introduction/Characterisation 11.3.1.2 Portland – BFS Cement and BFS Concrete 11.3.2 Fly Ashes 11.3.2.1 Introduction/Characterisation 11.3.2.2 Portland Fly Ash Cement and Fly Ash Concrete 11.3.3 Red Mud (KUR 1997) 11.3.3.1 Introduction 11.3.3.2 Applications 11.3.4 Cement Kiln Dust (CKD) 11.3.4.1 Introduction/Characterization 11.3.4.2 CKD with Other SCM in Cement/Concrete 11.4 Multi-Components from Natural Origin 11.4.1 Natural Pozzolans 11.4.1.1 Introduction/Characterisation 11.4.1.2 Pozzolan-Containing Cement and Concrete 11.4.2 Metakaolin 11.4.2.1 Introduction/Characterisation 11.4.2.2 Metakaolin-Containing Cement and Concrete 11.4.3 Rice Husk Ashes (RHA) 11.4.3.1 Introduction/Characterisation 11.4.3.2 RHA-Containing Cement and Concrete 11.4.4 Wollastonite 11.4.4.1 Introduction/Characterisation 11.4.4.2 Wollastonite Used as Asbestos Substitute 11.4.4.3 Wollastonite Used in the Paint Industry (20 000 t/year) 11.4.4.4 Wollastonite Used in Plastic and Rubber Industry (60 000 t/year) References Part II Cover back