دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: [1st ed. 2022]
نویسندگان: Adeeb Shehzad (editor)
سری:
ISBN (شابک) : 9811657580, 9789811657580
ناشر: Springer
سال نشر: 2022
تعداد صفحات: 377
[372]
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 7 Mb
در صورت تبدیل فایل کتاب Cancer Biomarkers in Diagnosis and Therapeutics به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب نشانگرهای زیستی سرطان در تشخیص و درمان نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این کتاب مبانی و ماشین آلات مولکولی زیربنایی سلولهای سرطانی و سنجشهای بیوشیمیایی را نشان میدهد که نوع و مرحله سرطان را از طریق نشانگرهای زیستی سیگنالینگ سلولی تشخیص میدهند. این کتاب با معرفی مختصری از نشانگرهای زیستی سرطان شروع میشود و به فناوریهایی برای شناسایی و اعتبارسنجی بیومارکرهای سرطان، نشانگرهای زیستی برای توسعه داروهای سرطان، نشانگرهای زیستی پیشآگهی و تشخیصی و میکروبیوم به عنوان نشانگرهای زیستی سرطان میپردازد. این بیومارکرهای پیشبینیکننده برای داروهای ضد سرطان، نشانگرهای زیستی در بقای سرطان و مقاومت دارویی، نشانگرهای زیستی در عود تومور و متاستاز، نقش بیومارکر در ایمونوتراپی و پزشکی شخصی، و توسعه یک نشانگر زیستی سرطان جدید را بررسی میکند. در نهایت، این کتاب همچنین نقش فناوری نانو را در استفاده و تشخیص بیومارکرهای سرطان برای افزایش حساسیت و ویژگی نشان میدهد. در نهایت، چالش ها با نشانگرهای زیستی در کشف و توسعه داروهای سرطان مورد بحث قرار می گیرد. این جلد ابزاری ضروری برای محققانی است که در زمینه سرطان کار می کنند و همچنین برای انکولوژیست های بالینی.
This book illustrates the basics and underlying molecular machinery of cancer cells and biochemical assays that detect the type and stage of cancer through cell signaling biomarkers. It starts with a brief introduction to cancer biomarkers and addresses technologies for identifying and validating cancer biomarkers, biomarkers for cancer drug development, prognostic and diagnostic biomarkers, and microbiome as cancer biomarkers. It reviews predictive biomarkers for anticancer drugs, biomarkers in cancer survival and drug resistance, biomarkers in tumor recurrence and metastasis, the role of the biomarker in immunotherapy and personalized medicine, and the development of a novel cancer biomarker. Finally, this book also underpins the role of nanotechnology in the use and detection of cancer biomarkers for enhanced sensitivity and specificity. Lastly, it discusses the challenges with biomarkers in cancer drug discovery and development. This volume is an indispensable tool for researchers working in the field of cancer and also for clinical oncologists.
Preface Contents Editor and Contributors 1: Introduction to Cancer Biomarkers 1.1 Introduction 1.1.1 Clinical Pathology of Cancer and Biomarkers 1.2 Serum, Biological Fluid, and Tissue Cancer Biomarkers 1.3 Clinical Applications and Performance Indications of Cancer Biomarkers 1.3.1 Sensitivity and Specificity for the Evaluation of the Accuracy of CB 1.3.2 Receiver Operating Characteristic (ROC) Curve Examination 1.3.3 Ideal Biomarkers 1.4 Clinical Uses and Limitations of Cancer Biomarkers 1.4.1 Screening/Early Identification 1.4.2 Identifying/Differential Determination 1.4.3 Prognosis/Estimation 1.4.4 Therapeutic Monitoring/Follow-Up/Evidence of Metastasis or Recurrence 1.5 Uses of CB in Malignant Cancers 1.5.1 Breast Malignant Growth 1.5.2 Prostate Cancer 1.5.3 Ovarian Malignancy 1.5.4 Colorectal Malignant Growth 1.6 New Biomarkers/Approval/Advancements 1.6.1 Challenges for the Investigation of Novel Biomarkers 1.6.2 Genomic Advancements 1.6.3 Epigenomics 1.6.4 Proteomics 1.6.5 Metabolomics 1.7 Conclusion References 2: Technologies for Identification and Validation of Cancer Biomarkers 2.1 Cancer Biomarkers 2.2 Types of Cancer Biomarkers 2.2.1 Screening Biomarkers 2.2.2 Predictive Biomarkers 2.2.3 Prognostic Biomarkers 2.2.4 Diagnostic Biomarkers 2.2.5 Monitoring Biomarkers 2.3 Discovery of CBMs 2.3.1 Preclinical Studies 2.3.1.1 In-Silico Studies 2.3.1.2 In Vitro 2.3.1.3 Microfluidics Chip Technology 2.3.1.4 In Vivo 2.3.2 Clinical Studies 2.3.2.1 CBMs Already in Clinics? 2.3.2.2 CBMs Clinical Trials 2.4 Technologies That Lead to CBMs Discovery 2.4.1 Genomics (Nuclear and Mitochondrial CBMs) 2.4.1.1 Next-Generation Sequencing (DNA and RNA seq) 2.4.1.2 Microarrays: Gene Expression Profiling 2.4.1.3 Genome-Wide Association Studies 2.4.2 Proteomics (Cytoplasmic and Membrane CBMs) 2.4.2.1 Western Blotting 2.4.2.2 FACS 2.4.2.3 MALDI-TOF 2.4.3 Bioinformatics (Predictive/Deduced CBMs) 2.4.3.1 Molecular Docking 2.4.3.2 Simulations 2.4.3.3 Molecules-Interaction Network Analysis 2.4.3.4 Support Vector Machine Learning 2.4.3.5 Integrated Databases 2.4.4 Metabolomics 2.4.5 Epigenetics Biomarkers 2.4.5.1 DNA Methylation: Aberrations 2.4.5.2 Histone Posttranslational Modifications 2.4.5.3 Chromatin Spatial Modifications 2.4.5.4 MicroRNAs 2.4.6 Microbiomics Biomarkers 2.4.7 Cancer Imaging Technologies 2.5 Emerging Technologies 2.5.1 Circulatory Cancer Biomarkers 2.5.1.1 Circulating Tumor Cells 2.5.1.2 Circulatory DNA/RNA 2.5.1.3 miRNA 2.5.1.4 Exosomes 2.5.2 Drug Repurposing References 3: Biomarkers for Cancer Drug Development 3.1 Introduction 3.2 Cancer Therapy 3.3 Biomarkers 3.3.1 Biomarkers Discovery 3.3.2 Cancer Biomarkers Classification 3.4 Biomarkers in Drug Development 3.5 Biomarkers in Cancer Treatment 3.6 Cancer Biomarkers Currently Available in Clinic 3.6.1 FZR1 as a Probable Biomarker for NACT in Breast Cancer 3.7 Biomarkers for Preclinical Modelling 3.7.1 Screening Apoptosis 3.7.2 CD20, CD22, CD30, and CD79b as Lymphoid Malignancy Targets 3.7.3 CD33, CD123 and CLL-1 as Focuses for Myeloid Malignancies 3.7.4 Biomarkers for Strong Tumor Immunotherapy 3.7.5 Tyrosine Kinase Biomarkers as Targets of Small Molecule Inhibitors 3.7.6 Designing Biomarkers Through Systems Biology for Cancer Treatment 3.8 Challenges of Biomarkers in Medical Revelation 3.9 Future Recommendation References 4: Clinical Proteomics: Diagnostics and Prognostic Markers of Cancer 4.1 Clinical Proteomics 4.2 Goals and Need for Proteomics 4.3 Methods of Protein Measurement and Biomarker Identification 4.3.1 Bottom-up or Shotgun Proteomics 4.3.2 Mass Spectrometry-Based Proteomics 4.3.3 Polyacrylamide Gel Electrophoresis (PAGE) 4.4 Proteomics and Cancer 4.5 Early Diagnosis of Cancer 4.5.1 Diagnostics of Cancer and Proteomic 4.6 Prognostics of Cancer and Proteomics 4.7 Recent Advances in Clinical Proteomics Methodologies 4.8 Conclusions and Future Directions References 5: Microbiome as Cancer Biomarkers 5.1 Introduction: Microbiome as Cancer Biomarkers 5.1.1 Intestinal Microbiome: Biomarkers of Colorectal Cancer 5.1.1.1 Colorectal Cancer 5.1.1.2 Relationship Between Intestinal Microbiota and Colorectal Cancer 5.1.1.2.1 Bacteroides fragilis 5.1.1.2.2 Escherichia coli 5.1.1.2.3 Fusobacterium 5.1.2 Intestinal Microbiome: Biomarkers of Pancreatic Cancer 5.1.3 Intestinal Microbiome: Biomarkers of Liver Cancer 5.1.4 Intestinal Microbiome: Biomarker of Breast Cancer 5.1.5 Intestinal and Lung Microbiome: Biomarkers of Lung Cancer 5.1.6 Intestinal and Gastric Microbiome: Biomarkers of Gastric Cancer 5.2 Oral Microbiome: Biomarker of Oral and Oropharyngeal Cancers 5.3 Vaginal Microbiome: Biomarker of Cervical Cancer 5.4 Gut Microbiome: Markers for Modulation of Immune System and Breast Cancer 5.5 Uterine Microbiome: Biomarkers of Endometrial Cancer 5.6 Cutaneous Microbiome: Biomarkers of Skin Cancer 5.7 Gastrointestinal and Urinary Microbiota: Biomarkers of Prostate Cancer 5.8 Urinary Microbiome: Biomarkers of Bladder Cancer 5.9 Conclusions References 6: Predictive Biomarkers for Anticancer Drugs 6.1 Introduction 6.2 Introduction to Predictive Biomarkers 6.3 Need for Predictive Biomarkers 6.4 Identification of Predictive Biomarkers for Anticancer Drugs 6.5 Tools and Techniques for Predictive Biomarker Identification 6.5.1 Clinical Trial Designs and Analysis Techniques 6.5.2 In Situ Hybridization and Immunohisto Chemistry Techniques 6.5.3 PCR-Based Technologies and Multiplexed Gene Analysis 6.5.4 Microarray Technology 6.5.5 Massive Parallel Sequencing 6.5.6 Flow Cytometry 6.5.7 Molecular Imaging 6.5.8 Digital and Computational Pathology 6.5.9 Bioinformatics and Biostatistical Tools 6.6 Cancer Biomarkers for Predicting the Response Toward the Treatment 6.6.1 Circulating Tumor Cells (CTCs) 6.6.2 Mutations and Polymorphisms 6.6.3 Methylation 6.6.4 Gene and miRNA Expression 6.7 Challenges in Identification and Discovery of Predictive Biomarkers 6.8 Conclusion References 7: Biomarkers in Cancer Survival and Drug Resistance 7.1 Introduction 7.2 Role and Uses of Biomarkers in Cancer CellSurvival 7.2.1 Risk Assessment 7.2.2 Diagnosis 7.2.3 Prognosis and Treatment Predictions 7.2.4 Pharmacodynamics and Pharmacokinetics 7.2.5 Treatment Response Monitoring 7.2.6 Recurrence 7.2.7 Developing Drug Targets 7.2.8 Surrogate Endpoints 7.3 Drug Resistance 7.3.1 Types of Drug Resistance 7.3.1.1 Intrinsic and Acquired Drug Resistance 7.3.1.2 Intrinsic Resistance 7.3.1.3 Acquired Resistance 7.3.2 Role of MiRNAs in CRC Drug Resistance Regulation 7.3.2.1 MicroRNAs as Drug Response Noninvasive Biomarkers in CRC 7.4 Biomarker´s Assessment Methods 7.5 Therapy-Related Biomarkers 7.5.1 VEGF/VEGFR-Targeted Therapy 7.5.2 Genetic Determinants as Susceptibility Biomarkers 7.6 Guidelines for Tumor Biomarkers 7.6.1 Alpha-Feto Protein 7.6.2 Cancer Antigen 125 (CA125) 7.6.3 Carcinoembryonic Antigen (CEA) 7.6.4 Human Chorionic Gonadotropin (hCG) 7.6.5 Prostate Specific Antigen (PSA) 7.6.6 Estrogen and Progesterone receptors (ERs and PRs) 7.6.7 Human Epididymal Secretory Protein 4 (HE4) 7.7 MicroRNAs as Potential Biomarkers 7.8 Additional Factors Contributing to Drug Resistance and Cancer Survival 7.8.1 Autophagy and Multidrug Resistance in Cancer 7.9 Challenges in Clinical Applications of Biomarkers References 8: Biomarkers in Tumor Recurrence and Metastasis 8.1 Introduction 8.2 Cancer Metastasis and Recurrence 8.2.1 Cancer Metastasis 8.2.1.1 Mechanism of Metastatic Cascade 8.2.1.1.1 Invasion 8.2.1.1.2 Intravasation 8.2.1.1.3 Extravasation 8.2.1.2 Changes in Extracellular Matrix (ECM) 8.2.1.3 Epithelial to Mesenchymal Transition 8.2.1.4 Angiogenesis and Lymphomagenesis 8.3 Biomarkers Related to Cancer Metastasis 8.3.1 Prostate Cancer 8.3.2 Breast Cancer 8.3.3 Lung Cancer 8.3.4 Colorectal Cancer 8.4 Cancer Recurrence 8.4.1 Mechanism of Cancer Recurrence 8.5 Biomarkers Related to Cancer Recurrence 8.5.1 Breast Cancer 8.5.2 Prostate Cancer 8.5.3 Leukemia 8.6 Applications of Cancer Biomarkers in Most Common Cancers 8.6.1 Breast Cancer 8.6.2 Prostate Cancer 8.6.3 Ovarian Cancer 8.7 Conclusion 8.8 Future Perspectives References 9: Biomarkers for Cancer Immunotherapy 9.1 Introduction 9.2 Programmed Death-Ligand 1 (PD-L1) 9.3 Tumor Mutational Burden, Mismatch Repair Deficiency, and Neoantigens 9.3.1 Concerns About TMB 9.4 Tumor-Infiltrating Lymphocytes (TILs) 9.4.1 Effect of Chemokines on TILs 9.5 Neutrophil-Lymphocyte Ratio (NLR) 9.6 Lactate Dehydrogenase (LDH) 9.7 MicroRNA (miRNA) 9.8 Microbiome 9.9 Conclusion References 10: Role of Biomarkers in Personalized Medicine 10.1 Introduction 10.2 Discovery and Validation of Biomarkers 10.3 Biomarker´s Role in Early Detection and Diagnosis 10.3.1 B-Cell Lymphoma 2 10.3.2 B-Cell Lymphoma 6 10.3.3 Nuclear Factor Kappa-B 10.3.4 MYC 10.4 Role of Biomarkers in the Early Detection of Colorectal Cancer (CRC) 10.5 Potential Biomarkers in Skin Cancer 10.6 Biomarkers for Asthma 10.7 Significance of Biomarker Strategies in Drug Development 10.8 Personalized Medicine in Conventional Therapeutic Approaches 10.9 Personalized Medicine in Novel Therapeutic Strategies 10.10 Bioengineering and Personalized Medicine 10.11 Personalized Cell Therapy and Drug Delivery 10.12 Concluding Remarks and Future Directions References 11: Development of Novel Cancer Biomarkers for Diagnosis and Prognosis 11.1 Introduction 11.2 Novel Biomarkers for Diagnosis and Prognosis of Prostate Cancer 11.2.1 Serum Prostate-Specific Antigen (PSA) 11.2.2 Field DNA Methylation 11.2.3 mtDNA Deletion 11.2.4 Alpha-Methylacyl Coenzyme a Racemase (AMACR) 11.2.5 Single Nucleotide Polymorphisms (SNPs) 11.2.6 ERG 11.2.7 PCA3 11.2.8 SAP30L-AS1 and SChLAP1 11.2.9 Multiple Truncated AR Variants (AR-Vs) 11.2.10 miRNAs 11.2.11 Circulating Tumor Cells (CTCs) 11.2.12 Exosomes 11.3 Novel Biomarkers for Diagnosis and Prognosis of Ovarian Cancer 11.3.1 CA 125 11.3.2 Circulating Fetal Protein Alpha-Fetoprotein (RECAF) 11.3.3 Human Epididymis Protein (HE4) 11.3.4 Mesothelin 11.3.5 Kallikrein-Related Peptidases (KLKs) 11.3.6 Osteopontin 11.3.7 ApoA1 11.3.8 Vascular Cell Adhesion Molecules 1 (VCAM-1) 11.3.9 BRCA1 11.3.10 P53 11.3.11 MicroRNAs 11.4 Novel Biomarkers for Diagnosis and Prognosis of Lungs Cancer 11.4.1 SAA Proteins 11.4.2 Epidermal Growth Factor Receptor (EGFR) 11.4.3 Anaplastic Lymphoma Kinase (ALK) 11.4.4 Kirsten Rat Sarcoma Viral Oncogene Homolog (KRAS) 11.4.5 Receptor Tyrosine Kinase (ROS1) 11.4.6 The Human Epidermal Growth Factor Receptor 2 (HER2) 11.4.7 Phosphatidylinositol-4,5-Bisphosphate 3-Kinase, Catalytic Subunit α (PIK3CA) 11.4.8 The Neurotrophic Receptor Tyrosine Kinase 1 (NTRK1) 11.4.9 The Fibroblast Growth Factor Receptor (FGFR) 11.4.10 The Discoidin Domain Receptor Tyrosine Kinase Two Genes (DDR2) 11.5 Novel Biomarkers for Diagnosis and Prognosis of Breast Cancer 11.5.1 Human Epidermal Growth Receptor (HER2) 11.5.2 ER Expression 11.5.3 Mib1/Ki-67 11.5.4 Osteopontin 11.5.5 Phosphatidylinositol-4,5-Bisphosphate 3-Kinase, Catalytic Subunit α (PIK3CA) 11.5.6 Tissue Inhibitor of Metalloproteinases-1 (TIMP-1) 11.5.7 Ferritin Light Chain (FTL) 11.5.8 Urokinase-Type Plasminogen Activator (uPA) 11.5.9 Soluble Human Epidermal Growth Factor Receptor 2 (sHER2) 11.5.10 Mitotic Arrest Deficient Like 1 (MAD1L1) 11.6 Novel Biomarkers for Diagnosis and Prognosis of Leukemia 11.6.1 CD123 11.6.2 Tumor Necrosis Factor Receptor 2 (sTNFR2) 11.6.3 NPM1 and FLT3 Mutation 11.6.4 BCR-ABL Tyrosine Kinase Inhibitor (TKI) 11.6.5 MicroRNAs 11.6.6 Exosomes 11.7 Novel Biomarkers for Diagnosis and Prognosis of Lymphoma 11.7.1 Imaging-Based Biomarkers 11.7.2 Peripheral Blood-Based Biomarkers 11.7.3 Circulating Tumor DNA (ctDNA) Biomarkers 11.7.4 Identification of Biomarkers Using Gene Expression Profiling 11.8 Novel Biomarkers for Diagnosis and Prognosis of Adenocarcinoma of the Upper Digestive Tract 11.8.1 Mammalian Target of Rapamycin (mTOR) 11.8.2 c-Met 11.8.3 Vascular Endothelial Growth Factor (VEGF) 11.8.4 Human Epidermal Growth Factor Receptor 2 (HER2) and Epidermal Growth Factor Receptor (EGFR) 11.8.5 Germline Alterations (Single Nucleotide Polymorphisms (SNPs)) 11.8.6 Chemotherapy-Associated Metabolism Genes 11.8.7 NF-κB 11.8.8 Excision Repair Cross-complementing 1 (ERCC1) 11.8.9 ATP-Binding Cassette Transporters (ABC Transporters) 11.9 Novel Biomarkers for Pancreatic Disease Treatment and Diagnosis 11.9.1 Angiogenesis Factors 11.9.2 Gene Expression and Potential Factors 11.9.3 ZIP3 (Zinc/Iron-Regulated Transporter-Related Protein 3) 11.9.4 Cancer Stem Cell Biomarkers 11.9.5 Saliva Biomarkers 11.9.6 Pancreatic Juice Biomarkers 11.9.7 Plasma Biomarkers 11.9.8 Metabolomic Biomarkers 11.10 Novel Biomarkers for Diagnosis and Prognosis of Esophageal Cancer 11.10.1 Mutations and Polymorphisms 11.10.2 Genomic Instability 11.10.3 Proteomics Biomarkers 11.10.4 Epigenetic Biomarkers 11.10.5 miRNA 11.10.6 DNA Methylation 11.10.7 Exosomes 11.10.8 Circulating Tumor Cells (CTCs) 11.10.9 Circulating Tumor DNA (ctDNA) 11.11 Novel Biomarkers for Diagnosis and Prognosis of Colorectal Cancer 11.11.1 Caudal Type-Homeobox 2 11.11.2 Cytokeratins (CKs) 11.11.3 Cadherin 17 11.11.4 Special AT-Rich Sequence Binding Protein 2 (SATB2) 11.11.5 GPA33 11.11.6 Telomerase 11.11.7 MicroRNA (miRNAs) 11.11.8 Insulin-Like Growth Factors Binding Protein 2 (IGFBP-2) 11.11.9 Long Non-coding RNAs (lncRNAs) 11.11.10 Circulating Cell-Free DNA (cfDNA) 11.11.11 Microsatellite Instability 11.11.12 BRAF 11.11.13 SMAD4 11.11.14 p53 11.11.15 Neutrophil-to-Lymphocyte Ratio 11.11.16 CEA Levels 11.12 Conclusion References 12: Nanotechnology for Cancer Biomarkers 12.1 Introduction 12.2 Nanomaterials-Based Biosensing Platforms 12.2.1 Nanoparticles 12.2.2 Targeting Ligand-Conjugated NPs for Detection of Biomarkers 12.2.3 Protein-Conjugated NPs 12.2.4 Aptamer-Conjugated NPs 12.2.5 Carbon Nanotubes (CNTs) 12.2.6 Quantum Dots (QDs) 12.3 Nanotechnology-Enhanced Detection of Cancer Biomarkers 12.3.1 Lab-on-a-Chip Technology 12.3.2 Mass Spectrometry 12.3.3 Raman Spectroscopy 12.3.4 Fluorescence and Luminescence Detection 12.3.5 Electrical and Electrochemical Detection 12.4 Conclusion References