دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: [2 ed.] نویسندگان: Michael Evans, David Treeby, Kay Lipson, Josian Astruc, Neil Cracknell, Daniel Mathews سری: ISBN (شابک) : 9781009110570 ناشر: Cambridge University Press سال نشر: 2023 تعداد صفحات: 851 [865] زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 81 Mb
در صورت تبدیل فایل کتاب Cambridge Specialist Mathematics VCE Units 3&4 به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب واحدهای 3 و 4 ریاضیات تخصصی کمبریج VCE نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Cover Contents Introduction and overview Acknowledgements 1 Preliminary topics 1A Circular functions 1B The sine and cosine rules 1C Sequences and series 1D The modulus function 1E Circles 1F Ellipses and hyperbolas 1G Parametric equations 1H Algorithms and pseudocode Review of Chapter 1 2 Logic and proof 2A Revision of proof techniques 2B Quantifiers and counterexamples 2C Proving inequalities 2D Telescoping series 2E Mathematical induction Review of Chapter 2 3 Circular functions 3A The reciprocal circular functions 3B Compound and double angle formulas 3C The inverse circular functions 3D Solution of equations 3E Sums and products of sines and cosines Review of Chapter 3 4 Vectors 4A Introduction to vectors 4B Resolution of a vector into rectangular components 4C Scalar product of vectors 4D Vector projections 4E Collinearity 4F Geometric proofs Review of Chapter 4 5 Vector equations of lines and planes 5A Vector equations of lines 5B Intersection of lines and skew lines 5C Vector product 5D Vector equations of planes 5E Distances, angles and intersections Review of Chapter 5 6 Complex numbers 6A Starting to build the complex numbers 6B Modulus, conjugate and division 6C Polar form of a complex number 6D Basic operations on complex numbers in polar form 6E Solving quadratic equations over the complex numbers 6F Solving polynomial equations over the complex numbers 6G Using De Moivre’s theorem to solve equations 6H Sketching subsets of the complex plane Review of Chapter 6 7 Revision of Chapters 1–6 7A Technology-free questions 7B Multiple-choice questions 7C Extended-response questions 7D Algorithms and pseudocode 8 Differentiation and rational functions 8A Differentiation 8B Derivatives of x = f(y) 8C Derivatives of inverse circular functions 8D Second derivatives 8E Points of inflection 8F Related rates 8G Rational functions 8H A summary of differentiation 8I Implicit differentiation Review of Chapter 8 9 Techniques of integration 9A Antidifferentiation 9B Antiderivatives involving inverse circular functions 9C Integration by substitution 9D Definite integrals by substitution 9E Use of trigonometric identities for integration 9F Further substitution 9G Partial fractions 9H Integration by parts 9I Further techniques and miscellaneous exercises Review of Chapter 9 10 Applications of integration 10A The fundamental theorem of calculus 10B Area of a region between two curves 10C Integration using a CAS calculator 10D Volumes of solids of revolution 10E Lengths of curves in the plane 10F Areas of surfaces of revolution Review of Chapter 10 11 Differential equations 11A An introduction to differential equations 11B Differential equations involving a function of the independent variable 11C Differential equations involving a function of the dependent variable 11D Applications of differential equations 11E The logistic differential equation 11F Separation of variables 11G Differential equations with related rates 11H Using a definite integral to solve a differential equation 11I Using Euler’s method to solve a differential equation 11J Slope field for a differential equation Review of Chapter 11 12 Kinematics 12A Position, velocity and acceleration 12B Constant acceleration 12C Velocity–time graphs 12D Differential equations of the form v = f(x) and a = f(v) 12E Other expressions for acceleration Review of Chapter 12 13 Vector functions and vector calculus 13A Vector functions 13B Position vectors as a function of time 13C Vector calculus 13D Velocity and acceleration for motion along a curve Review of Chapter 13 14 Revision of Chapters 8–13 14A Technology-free questions 14B Multiple-choice questions 14C Extended-response questions 14D Algorithms and pseudocode 15 Linear combinations of random variables and the sample mean 15A Linear functions of a random variable 15B Linear combinations of random variables 15C Linear combinations of normal random variables 15D The sample mean of a normal random variable 15E Investigating the distribution of the sample mean using simulation 15F The distribution of the sample mean Review of Chapter 15 16 Confidence intervals and hypothesis testing for the mean 16A Confidence intervals for the population mean 16B Hypothesis testing for the mean 16C One-tail and two-tail tests 16D Two-tail tests revisited 16E Errors in hypothesis testing Review of Chapter 16 17 Revision of Chapters 15–16 17A Technology-free questions 17B Multiple-choice questions 17C Extended-response questions 17D Algorithms and pseudocode 18 Revision of Chapters 1–17 18A Technology-free questions 18B Multiple-choice questions 18C Extended-response questions Glossary Answers