دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: [2 ed.] نویسندگان: David Treeby, Michael Evans, Douglas Wallace, Kay Lipson, Gareth Ainsworth سری: ISBN (شابک) : 9781009110532, 1009110535 ناشر: Cambridge University Press سال نشر: 2022 تعداد صفحات: [856] زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 12 Mb
در صورت تبدیل فایل کتاب Cambridge Senior Mathematics VCE: Specialist Mathematics VCE Units 1 & 2 به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب Cambridge Senior Mathematics VCE: Specialist Mathematics VCE Units 1 and 2 نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Cover Contents Introduction and overview Acknowledgements 1 Reviewing algebra 1A Indices 1B Standard form 1C Solving linear equations and simultaneous linear equations 1D Solving problems with linear equations 1E Solving problems with simultaneous linear equations 1F Substitution and transposition of formulas 1G Algebraic fractions 1H Literal equations 1I Using a CAS calculator for algebra Review of Chapter 1 2 Number systems and sets 2A Set notation 2B Sets of numbers 2C Surds 2D Natural numbers 2E Problems involving sets Review of Chapter 2 3 Sequences and series 3A Introduction to sequences 3B Arithmetic sequences 3C Arithmetic series 3D Geometric sequences 3E Geometric series 3F Applications of geometric sequences 3G Recurrence relations of the form tn = rtn–1 + d 3H Zeno’s paradox and infinite geometric series Review of Chapter 3 4 Additional algebra 4A Polynomial identities 4B Quadratic equations 4C Applying quadratic equations to rate problems 4D Partial fractions 4E Simultaneous equations Review of Chapter 4 5 Revision of Chapters 1–4 5A Technology-free questions 5B Multiple-choice questions 5C Extended-response questions 5D Investigations 6 Proof 6A Direct proof 6B Proof by contrapositive 6C Proof by contradiction 6D Equivalent statements 6E Disproving statements 6F Mathematical induction Review of Chapter 6 7 Logic 7A The algebra of sets 7B Switching circuits 7C Boolean algebra 7D Logical connectives and truth tables 7E Valid arguments 7F Logic circuits 7G Karnaugh maps Review of Chapter 7 8 Algorithms 8A Introduction to algorithms 8B Iteration and selection 8C Introduction to pseudocode 8D Further pseudocode Review of Chapter 8 9 Combinatorics 9A Basic counting methods 9B Factorial notation and permutations 9C Permutations with restrictions 9D Permutations of like objects 9E Combinations 9F Combinations with restrictions 9G Pascal’s triangle 9H The pigeonhole principle 9I The inclusion–exclusion principle Review of Chapter 9 10 Revision of Chapters 6–9 10A Technology-free questions 10B Multiple-choice questions 10C Extended-response questions 10D Investigations 11 Matrices 11A Matrix notation 11B Addition, subtraction and multiplication by a real number 11C Multiplication of matrices 11D Identities, inverses and determinants for 2 x 2 matrices 11E Solution of simultaneous equations using matrices 11F Inverses and determinants for n x n matrices 11G Simultaneous linear equations with more than two variables Review of Chapter 11 12 Graph theory 12A Graphs and adjacency matrices 12B Euler circuits 12C Hamiltonian cycles 12D Using matrix powers to count walks in graphs 12E Regular, cycle, complete and bipartite graphs 12F Trees 12G Euler’s formula and the Platonic solids 12H Appendix: When every vertex has even degree Review of Chapter 12 13 Revision of Chapters 11–12 13A Technology-free questions 13B Multiple-choice questions 13C Extended-response questions 13D Investigations 14 Simulation, sampling and sampling distributions 14A Expected value and variance for discrete random variables 14B Distribution of sums of random variables 14C Populations and samples 14D Investigating the distribution of the sample mean using simulation Review of Chapter 14 15 Trigonometric ratios and applications 15A Reviewing trigonometry 15B The sine rule 15C The cosine rule 15D The area of a triangle 15E Circle mensuration 15F Angles of elevation, angles of depression and bearings 15G Problems in three dimensions 15H Angles between planes and more difficult 3D problems Review of Chapter 15 16 Trigonometric identities 16A Reciprocal circular functions and the Pythagorean identity 16B Compound and double angle formulas 16C Simplifying a cos x + b sin x 16D Sums and products of sines and cosines Review of Chapter 16 17 Graphing functions and relations 17A The inverse circular functions 17B Reciprocal functions 17C Graphing the reciprocal circular functions 17D The modulus function 17E Locus of points 17F Parabolas 17G Ellipses 17H Hyperbolas 17I Parametric equations 17J Polar coordinates 17K Graphing using polar coordinates Review of Chapter 17 18 Complex numbers 18A Starting to build the complex numbers 18B Multiplication and division of complex numbers 18C Argand diagrams 18D Solving quadratic equations over the complex numbers 18E Solving polynomial equations over the complex numbers 18F Polar form of a complex number 18G Sketching subsets of the complex plane Review of Chapter 18 19 Revision of Chapters 15–18 19A Technology-free questions 19B Multiple-choice questions 19C Extended-response questions 19D Investigations 20 Transformations of the plane 20A Linear transformations 20B Geometric transformations 20C Rotations and general reflections 20D Composition of transformations 20E Inverse transformations 20F Transformations of straight lines and other graphs 20G Area and determinant 20H General transformations Review of Chapter 20 21 Vectors in the plane 21A Introduction to vectors 21B Components of vectors 21C Scalar product of vectors 21D Vector projections 21E Geometric proofs 21F Applications of vectors: displacement and velocity 21G Applications of vectors: relative velocity 21H Applications of vectors: forces and equilibrium 21I Vectors in three dimensions Review of Chapter 21 22 Revision of Chapters 20–21 22A Technology-free questions 22B Multiple-choice questions 22C Extended-response questions Glossary Answers