دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
دسته بندی: ریاضیات ویرایش: 5 نویسندگان: Ross L. Finney, Franklin D. Demana, Bert K. Waits, Daniel Kennedy, David M. Bressoud سری: ISBN (شابک) : 9780133311617, 0133311627 ناشر: Pearson Education سال نشر: 2016 تعداد صفحات: 716 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 88 مگابایت
کلمات کلیدی مربوط به کتاب حساب: گرافیکی ، عددی ، جبری: پیرسون، حساب دیفرانسیل و انتگرال، جبری عددی، حساب دیفرانسیل و انتگرال، گرافیک، عددی، جبری
در صورت تبدیل فایل کتاب Calculus: Graphical, Numerical, Algebraic به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب حساب: گرافیکی ، عددی ، جبری نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Prerequisites for Calculus 2 1.1 Linear Functions 3 Increments and Slope • Point-Slope Equation of a Linear Function • Other Linear Equation Forms • Parallel and Perpendicular Lines • Applications of Linear Functions • Solving Two Linear Equations Simultaneously 1.2 Functions and Graphs 13 Functions • Domains and Ranges • Viewing and Interpreting Graphs • Even Functions and Odd Functions—Symmetry • Piecewise-Defined Functions • Absolute Value Function • Composite Functions 1.3 Exponential Functions 23 Exponential Growth • Exponential Decay • Compound Interest • The Number e 1.4 Parametric Equations 29 Relations • Circles • Ellipses • Lines and Other Curves 1.5 Inverse Functions and Logarithms 36 One-to-One Functions • Inverses • Finding Inverses • Logarithmic Functions • Properties of Logarithms • Applications 1.6 Trigonometric Functions 45 Radian Measure • Graphs of Trigonometric Functions • Periodicity • Even and Odd Trigonometric Functions • Transformations of Trigonometric Graphs • Inverse Trigonometric Functions Key Terms 53 Review Exercises 54 Chapter 2 Limits and Continuity 58 2.1 Rates of Change and Limits 59 Average and Instantaneous Speed • Definition of Limit • Properties of Limits • One-Sided and Two-Sided Limits • Squeeze Theorem 2.2 Limits Involving Infinity 70 Finite Limits as x S ±q • Squeeze Theorem Revisited • Infinite Limits as x S a • End Behavior Models • “Seeing” Limits as x S ±q 2.3 Continuity 78 Continuity at a Point • Continuous Functions • Algebraic Combinations • Composites • Intermediate Value Theorem for Continuous Functions 2.4 Rates of Change, Tangent Lines, and Sensitivity 87 Average Rates of Change • Tangent to a Curve • Slope of a Curve • Normal to a Curve • Speed Revisited • Sensitivity Key Terms 96 Review Exercises 97 A01_DEMA1617_05_SE_FM_i-xxxii.indd 11 17/12/14 12:15 PM xii Contents Chapter 3 Derivatives 100 3.1 Derivative of a function 101 Definition of Derivative • Notation • Relationships Between the Graphs of ƒ and ƒ′ • Graphing the Derivative from Data • One-Sided Derivatives 3.2 Differentiability 111 How ƒ′1a2 Might Fail to Exist • Differentiability Implies Local Linearity • Numerical Derivatives on a Calculator • Differentiability Implies Continuity • Intermediate Value Theorem for Derivatives 3.3 rules for Differentiation 118 Positive Integer Powers, Multiples, Sums, and Differences • Products and Quotients • Negative Integer Powers of x • Second and Higher Order Derivatives 3.4 velocity and other rates of Change 129 Instantaneous Rates of Change • Motion Along a Line • Sensitivity to Change • Derivatives in Economics 3.5 Derivatives of trigonometric functions 143 Derivative of the Sine Function • Derivative of the Cosine Function • Simple Harmonic Motion • Jerk • Derivatives of the Other Basic Trigonometric Functions Key terms 150 review exercises 150 Chapter 4 More Derivatives 154 4.1 Chain rule 155 Derivative of a Composite Function • “Outside-Inside” Rule • Repeated Use of the Chain Rule • Slopes of Parametrized Curves • Power Chain Rule 4.2 implicit Differentiation 164 Implicitly Defined Functions • Lenses, Tangents, and Normal Lines • Derivatives of Higher Order • Rational Powers of Differentiable Functions 4.3 Derivatives of inverse trigonometric functions 173 Derivatives of Inverse Functions • Derivative of the Arcsine • Derivative of the Arctangent • Derivative of the Arcsecant • Derivatives of the Other Three 4.4 Derivatives of exponential and logarithmic functions 180 Derivative of ex • Derivative of ax • Derivative of ln x • Derivative of logax • Power Rule for Arbitrary Real Powers Key terms 189 review exercises 189 Chapter 5 applications of Derivatives 192 5.1 extreme values of functions 193 Absolute (Global) Extreme Values • Local (Relative) Extreme Values • Finding Extreme Values 5.2 Mean value theorem 202 Mean Value Theorem • Physical Interpretation • Increasing and Decreasing Functions • Other Consequences A01_DEMA1624_05_SE_FM_i-xxxii.indd 12 04/12/14 5:31 PM Contents xiii 5.3 Connecting ƒ′ and ƒ ″ with the graph of ƒ 211 First Derivative Test for Local Extrema • Concavity • Points of Inflection • Second Derivative Test for Local Extrema • Learning About Functions from Derivatives 5.4 Modeling and optimization 224 A Strategy for Optimization • Examples from Mathematics • Examples from Business and Industry • Examples from Economics • Modeling Discrete Phenomena with Differentiable Functions 5.5 linearization, sensitivity, and Differentials 238 Linear Approximation • Differentials • Sensitivity Analysis • Absolute, Relative, and Percentage Change • Sensitivity to Change • Newton’s Method • Newton’s Method May Fail 5.6 related rates 252 Related Rate Equations • Solution Strategy • Simulating Related Motion Key terms 261 review exercises 262 Chapter 6 the Definite integral 268 6.1 estimating with finite sums 269 Accumulation Problems as Area • Rectangular Approximation Method (RAM) • Volume of a Sphere • Cardiac Output 6.2 Definite integrals 281 Riemann Sums • Terminology and Notation of Integration • Definite Integral and Area • Constant Functions • Definite Integral as an Accumulator Function • Integrals on a Calculator • Discontinuous Integrable Functions 6.3 Definite integrals and antiderivatives 293 Properties of Definite Integrals • Average Value of a Function • Mean Value Theorem for Definite Integrals • Connecting Differential and Integral Calculus 6.4 fundamental theorem of Calculus 302 Fundamental Theorem, Antiderivative Part • Graphing the Function 1 x a ƒ1t2 dt • Fundamental Theorem, Evaluation Part • Area Connection • Analyzing Antiderivatives Graphically 6.5 trapezoidal rule 314 Trapezoidal Approximations • Other Algorithms • Error Analysis Key terms 323 review exercises 323 Differential equations and Mathematical Chapter 7 Modeling 328 7.1 slope fields and euler’s Method 329 Differential Equations • Slope Fields • Euler’s Method 7.2 antidifferentiation by substitution 340 Indefinite Integrals • Leibniz Notation and Antiderivatives • Substitution in Indefinite Integrals • Substitution in Definite Integrals A01_DEMA1624_05_SE_FM_i-xxxii.indd 13 04/12/14 5:31 PM 7.3 antidifferentiation by Parts 349 Product Rule in Integral Form • Solving for the Unknown Integral • Tabular Integration • Inverse Trigonometric and Logarithmic Functions 7.4 exponential growth and Decay 358 Separable Differential Equations • Law of Exponential Change • Continuously Compounded Interest • Radioactivity • Modeling Growth with Other Bases • Newton’s Law of Cooling 7.5 logistic growth 369 How Populations Grow • Partial Fractions • The Logistic Differential Equation • Logistic Growth Models Key terms 378 review exercises 379 Chapter 8 applications of Definite integrals 384 8.1 accumulation and net Change 385 Linear Motion Revisited • General Strategy • Consumption over Time • Coming and Going • Net Change from Data • Density • Work 8.2 areas in the Plane 397 Area Between Curves • Area Enclosed by Intersecting Curves • Boundaries with Changing Functions • Integrating with Respect to y • Saving Time with Geometry Formulas 8.3 volumes 406 Volume as an Integral • Square Cross Sections • Circular Cross Sections • Cylindrical Shells • Other Cross Sections 8.4 lengths of Curves 420 A Sine Wave • Length of a Smooth Curve • Vertical Tangents, Corners, and Cusps 8.5 applications from science and statistics 427 Work Revisited • Fluid Force and Fluid Pressure • Normal Probabilities Key terms 438 review exercises 438 sequences, l’Hospital’s rule, and improper Chapter 9 integrals 442 9.1 sequences 443 Defining a Sequence • Arithmetic and Geometric Sequences • Graphing a Sequence • Limit of a Sequence 9.2 l’Hospital’s rule 452 Indeterminate Form 0>0 • Indeterminate Forms q>q, q # 0, and q- q • Indeterminate Forms 1q, 00, q0 9.3 relative rates of growth 461 Comparing Rates of Growth • Using L’Hospital’s Rule to Compare Growth Rates • Sequential Versus Binary Search xiv Contents A01_DEMA1624_05_SE_FM_i-xxxii.indd 14 04/12/14 5:31 PM 9.4 improper integrals 467 Infinite Limits of Integration • Integrands with Infinite Discontinuities • Test for Convergence and Divergence • Applications Key terms 477 review exercises 478 Chapter 10 infinite series 480 10.1 Power series 481 Geometric Series • Representing Functions by Series • Differentiation and Integration • Identifying a Series 10.2 taylor series 492 Constructing a Series • Series for sin x and cos x • Beauty Bare • Maclaurin and Taylor Series • Combining Taylor Series • Table of Maclaurin Series 10.3 taylor’s theorem 503 Taylor Polynomials • The Remainder • Bounding the Remainder • Analyzing Truncation Error • Euler’s Formula 10.4 radius of Convergence 513 Convergence • nth-Term Test • Comparing Nonnegative Series • Ratio Test • Endpoint Convergence 10.5 testing Convergence at endpoints 523 Integral Test • Harmonic Series and p-series • Comparison Tests • Alternating Series • Absolute and Conditional Convergence • Intervals of Convergence • A Word of Caution Key terms 537 review exercises 537 Chapter 11 Parametric, vector, and Polar functions 542 11.1 Parametric functions 543 Parametric Curves in the Plane • Slope and Concavity • Arc Length • Cycloids 11.2 vectors in the Plane 550 Two-Dimensional Vectors • Vector Operations • Modeling Planar Motion • Velocity, Acceleration, and Speed • Displacement and Distance Traveled 11.3 Polar functions 561 Polar Coordinates • Polar Curves • Slopes of Polar Curves • Areas Enclosed by Polar Curves • A Small Polar Gallery Key terms 574 review exercises 575 Contents xv A01_DEMA1624_05_SE_FM_i-xxxii.indd 15 04/12/14 5:31 PM xvi Contents appe NDIC e S a1 formulas from Precalculus Mathematics 577 a2 a formal Definition of limit 583 a3 a Proof of the Chain rule 591 a4 Hyperbolic functions 592 a5 a very Brief table of integrals 601 glossary 604 selected answers 615 applications index 672 subject index 676