دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: [January 11, 2021 ed.]
نویسندگان: Kenneth Kuttler
سری:
ناشر:
سال نشر: 2021
تعداد صفحات: 544
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 3 Mb
در صورت تبدیل فایل کتاب Calculus of Real and Complex Variables به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب حساب متغیرهای واقعی و مختلط نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
I Preliminary Topics Basic Notions Sets and Set Notation The Schroder Bernstein Theorem Equivalence Relations The Hausdorff Maximal Theorem The Hamel Basis Analysis of Real and Complex Numbers Roots Of Complex Numbers The Complex Exponential The Cauchy Schwarz Inequality Polynomials and Algebra The Fundamental Theorem of Algebra Some Topics from Analysis lim sup and lim inf Nested Interval Lemma Exercises Basic Topology and Algebra Some Algebra Metric Spaces Closed and Open Sets Sequences and Cauchy Sequences Separability and Complete Separability Compactness Continuous Functions Limits of Vector Valued Functions The Extreme Value Theorem and Uniform Continuity Convergence of Functions Multiplication of Series Tietze Extension Theorem Root Test Equivalence of Norms Norms on Linear Maps Connected Sets Stone Weierstrass Approximation Theorem The Bernstein Polynomials The Case of Compact Sets The Case of a Closed Set in Rp The Case Of Complex Valued Functions Brouwer Fixed Point Theorem Simplices and Triangulations Labeling Vertices The Brouwer Fixed Point Theorem Exercises II Real Analysis The Derivative, a Linear Transformation Basic Definitions The Chain Rule The Matrix of the Derivative Existence of the Derivative, C1 Functions Mixed Partial Derivatives A Cofactor Identity Implicit Function Theorem More Continuous Partial Derivatives Invariance of Domain Exercises Line Integrals Existence and Definition Change of Parameter Existence The Riemann Integral Estimates and Approximations Finding the Length of a C1 Curve Curves Defined in Pieces A Physical Application, Work Conservative Vector Fields Orientation Exercises Measures And Measurable Functions Measurable Functions Measures and Their Properties Dynkin's Lemma Measures and Outer Measures An Outer Measure on P( R) Measures from Outer Measures When is a Measure a Borel Measure? One Dimensional Lebesgue Measure Exercises The Abstract Lebesgue Integral Definition For Nonnegative Measurable Functions Riemann Integrals For Decreasing Functions The Lebesgue Integral For Nonnegative Functions The Lebesgue Integral for Nonnegative Simple Functions The Monotone Convergence Theorem Other Definitions Fatou's Lemma The Integral's Righteous Algebraic Desires The Lebesgue Integral, L1 The Dominated Convergence Theorem Product Measures Some Important General Theorems Eggoroff's Theorem The Vitali Convergence Theorem Radon Nikodym Theorem Exercises Positive Linear Functionals Partitions of Unity Positive Linear Functionals and Measures Lebesgue Measure Computation with Iterated Integrals Approximation with G0=x"010E and F0=x"011B Sets and Translation Invariance The Vitali Covering Theorems Exercises Basic Function Spaces Bounded Continuous Functions Compactness in C( K,Rn) The Lp Spaces Approximation Theorems Maximal Functions and Fundamental Theorem of Calculus A Useful Inequality Exercises Change of Variables Lebesgue Measure and Linear Transformations Change of Variables Nonlinear Maps Mappings Which are Not One to One Spherical Coordinates In p Dimensions Approximation with Smooth Functions Continuity Of Translation Separability Exercises Some Fundamental Functions and Transforms Gamma Function Laplace Transform Fourier Transform Fourier Transforms in Rn Fourier Transforms Of Just About Anything Fourier Transforms in G Fourier Transforms of Functions In L1( Rn) Fourier Transforms of Functions In L2( Rn) The Schwartz Class Convolution Exercises Degree Theory, an Introduction Sard's Lemma and Approximation Properties of the Degree Borsuk's Theorem Applications Product Formula, Jordan Separation Theorem The Jordan Separation Theorem Exercises Green's Theorem An Elementary Form of Green's Theorem Stoke's Theorem A General Green's Theorem The Jordan Curve Theorem Green's Theorem for a Rectifiable Jordan Curve Orientation of a Jordan Curve III Abstract Analysis Banach Spaces Theorems Based On Baire Category Baire Category Theorem Uniform Boundedness Theorem Open Mapping Theorem Closed Graph Theorem Basic Theory of Hilbert Spaces Hahn Banach Theorem Partially Ordered Sets Gauge Functions And Hahn Banach Theorem The Complex Version Of The Hahn Banach Theorem The Dual Space And Adjoint Operators Exercises Representation Theorems Radon Nikodym Theorem Vector Measures The Dual Space of Lp( ) The Dual Space Of L( ) The Dual Space Of C0( Rp) Exercises IV Complex Analysis Fundamentals Banach Spaces The Cauchy Riemann Equations Contour Integrals Primitives and Cauchy Goursat Theorem Functions Differentiable on a Disk, Zeros The General Cauchy Integral Formula Riemann sphere Exercises Isolated Singularities and Analytic Functions Open Mapping Theorem for Complex Valued Functions Functions Analytic on an Annulus The Complex Exponential and Winding Number Cauchy Integral Formula for a Cycle An Example of a Cycle Isolated Singularities The Residue Theorem Evaluation of Improper Integrals The Inversion of Laplace Transforms Exercises Mapping Theorems Meromorphic Functions Meromorphic on Extended Complex Plane Rouche's Theorem Fractional Linear Transformations Some Examples Riemann Mapping Theorem Montel's Theorem Regions with Square Root Property Exercises Spectral Theory of Linear Maps * The Resolvent and Spectral Radius Functions of Linear Transformations Invariant Subspaces Review of Linear Algebra Systems of Equations Matrices Subspaces and Spans Application to Matrices Mathematical Theory of Determinants The Function sgn Determinants Definition of Determinants Permuting Rows or Columns A Symmetric Definition Alternating Property of the Determinant Linear Combinations and Determinants Determinant of a Product Cofactor Expansions Formula for the Inverse Cramer's Rule Upper Triangular Matrices Cayley-Hamilton Theorem Eigenvalues and Eigenvectors of a Matrix Definition of Eigenvectors and Eigenvalues Triangular Matrices Defective and Nondefective Matrices Diagonalization Schur's Theorem Hermitian Matrices Right Polar Factorization Direct Sums Block Diagonal Matrices