ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Calculus BLUE Multivariable Vol 4: Fields

دانلود کتاب Calculus BLUE Multivariable جلد 4: فیلدها

Calculus BLUE Multivariable Vol 4: Fields

مشخصات کتاب

Calculus BLUE Multivariable Vol 4: Fields

ویرایش:  
نویسندگان:   
سری:  
ISBN (شابک) : 9781944655112 
ناشر:  
سال نشر: 2018 
تعداد صفحات: 464 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 242 مگابایت 

قیمت کتاب (تومان) : 31,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 11


در صورت تبدیل فایل کتاب Calculus BLUE Multivariable Vol 4: Fields به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب Calculus BLUE Multivariable جلد 4: فیلدها نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی درمورد کتاب به خارجی



فهرست مطالب

BLUE 4 INTRO
	COVER
	Title Page
	Table of Contents
	INSTRUCTIONS
	LET’S GO!
	SCENE 23
BLUE 4 PROLOGUE
	TITLE
	CHORUS
	FIELDS
	CHORUS
	Scalar & vector fields
	Flow fields
	Form fields
	CHORUS
	Algebra!
	Derivatives!
	Integrals!
	CHORUS
	THE BIG THREE
	CHORUS
	This is the End
	BUT SO WHAT?
	Work & flux
	Fluid dynamics
	Electromagnetics
	Medical imaging data
	Time series data
	CHORUS
	SO MUCH MORE!
Chapter 1 - fields
	TITLE
	CHORUS
	What is a -field?
	CHORUS
	EXAMPLE: gravitational fields
	Vector fields vs. flowlines
	IT’S COMPLICATED
	CHORUS
	EXAMPLE: planar vector fields
	EXAMPLE: radial vector fields
	BUT SO WHAT?
	CASE: fluids & gravity
	CASE: electromagnetic fields
	CHORUS
	Derivatives? Matrix fields!
	Taylor? Polynomial fields!
	Physics? Tensor fields!
	RELAX!!!
	CHORUS
	Continuous fields
	The BIG PICTURE
	PROBLEMS
	PROBLEMS
Chapter 2 - path integrals
	TITLE
	CHORUS
	BUT WHY?
	CHORUS
	DEFINITION: scalar path integral
	The BIG IDEA
	EXAMPLE: 2-d scalar path integral
	CHORUS
	THINK ABOUT IT
	The FACTS: path integrals
	CHORUS
	IMPORTANT!
	CHORUS
	EXAMPLE: paths in 3-d
	The BIG PICTURE
	PROBLEMS
	PROBLEMS
Chapter 3 - integrating 1-forms
	TITLE
	CHORUS
	Vector path integrals
	BUT WHY?
	CHORUS
	DEFINITION: vector path integral
	CHORUS
	IT’S TIME!
	EXAMPLE: 1-forms
	EXAMPLE: 1-form fields
	CHORUS
	Gradient 1-forms
	CHORUS
	DEFINITION: integrating 1-forms
	EXAMPLE: integrating a 1-form field
	EXAMPLE: a loop integral
	Vectors or 1-forms?
	CHORUS
	The BIG PICTURE
	PROBLEMS
	PROBLEMS
Chapter 4 - independence of path
	TITLE
	CHORUS
	A 1-FORM FIELD
	EXAMPLE: the gravitational 1-form
	CHORUS
	EXAMPLE: linear vs. rotational
	CHORUS
	THEOREM: Independence of Path Theorem
	PROOF
	Hello again, FTIC!
	CHORUS
	Detecting gradients
	EXAMPLE: gradient 1-forms?
	EXAMPLE: computing potentials
	CHORUS
	FTIC = key
	The BIG PICTURE
	PROBLEMS
	PROBLEMS
Chapter 5 - circ work and flux
	TITLE
	CHORUS
	Breaking the 4th wall
	BUT WHY?
	CHORUS
	The WORK 1-form
	EXAMPLE: computing work
	CHORUS
	EXAMPLE: circulation
	EXAMPLE: work & potential
	CHORUS
	The FLUX 1-form
	WORK vs FLUX
	EXAMPLE: computing flux
	EXAMPLE: flux across a loop
	CHORUS
	The BIG PICTURE
	PROBLEMS
	PROBLEMS
Chapter 6 - Greens theorem
	TITLE
	CHORUS
	EXAMPLE: an interesting 1-form
	EXAMPLE: an interesting 1-form
	CHORUS
	THEOREM: Green’s Theorem
	The BIG IDEA
	EXAMPLE: circulation & flux
	CHORUS
	EXAMPLE: differentiability matters
	EXAMPLE: orientation matters
	EXAMPLE: orientation matters
	BEWARE! Orientation
	CHORUS
	PROOF
	PROOF
	CHORUS
	BONUS! Applications of Green’s
	FORESHADOWING
	The BIG PICTURE
	PROBLEMS
	PROBLEMS
	Please sign…
Chapter 7 - grad-curl-div
	TITLE
	CHORUS
	THEOREM: Green’s Theorem
	CHORUS
	2-d curl & divergence
	Curl vs. Div in 2-d
	EXAMPLE: curl in 2-d
	EXAMPLE: divergence in 2-d
	CHORUS
	Divergence in 3-d
	EXAMPLE: divergence and volume
	Curl spinners in 3-d
	Curl and circulation densities
	Curl in 2-d as a vector field
	EXAMPLE: curl in 3-d
	NOTATION: del operator
	CHORUS
	IMPORTANT!
	CHORUS
	SO MUCH MORE!
	The BIG PICTURE
	PROBLEMS
	PROBLEMS
	Please sign…
Chapter 8 - Euclidean forms in 3D
	TITLE
	CHORUS
	LET\'S WORK in 3-D!
	LET’S THINK about 1-forms
	DEFINITION: basis 2-forms
	EXAMPLE: Euclidean 2-forms in 3-D
	CHORUS
	EXAMPLE: 2-form fields in 3-D
	EXAMPLE: flux 2-forms
	EXAMPLE: flux 2-form fields
	CHORUS
	The wedge product
	3-forms and 3-form fields
	What lies beyond 3-forms?
	CHORUS
	Derivatives of form fields
	EXAMPLE: derivatives of forms
	EXAMPLE: the curl as derivative
	EXAMPLE: divergence as derivative
	CHORUS
	IMPORTANT! d^2=0
	SUMMARY
	The BIG PICTURE
	PROBLEMS
	PROBLEMS
Chapter 9 - integrating 2-forms
	TITLE
	CHORUS
	Integrating planar 2-forms
	CHORUS
	This simplifies Green’s Theorem
	CHORUS
	Remember…
	What do 2-forms eat?
	FORMULA: integrating 2-forms
	Concerning orientation
	A field of normals
	CHORUS
	EXAMPLE: 2-form field integral
	EXAMPLE: 2-form field integral
	CHORUS
	EXAMPLE: using symmetry
	CHORUS
	BUT SO WHAT?
	Flux 2-form of a vector field
	FLUX illustrated
	EXAMPLE: easy flux
	EXAMPLE: hard flux
	EXAMPLE: hard flux
	CHORUS
	The BIG PICTURE
	PROBLEMS
	PROBLEMS
Chapter 10 - Gauss theorem
	TITLE
	CHORUS
	Green’s Theorem REDUX
	3-d!
	CHORUS
	THEOREM: Gauss’s theorem
	EXAMPLE: flux across a cube
	EXAMPLE: flux across a cube
	CHORUS
	EXAMPLE: I love Gauss!
	CHORUS
	I love avocados!
	EXAMPLE: region between spheres
	EXAMPLE: region between spheres
	CHORUS
	The BIG PICTURE
	PROBLEMS
	PROBLEMS
Chapter 11 - Stokes theorem
	TITLE
	CHORUS
	Green’s Theorem REDUX
	THEOREM: Stokes’ Theorem
	The BIG IDEA
	CHORUS
	EXAMPLE: easy Stokes’ Theorem
	This simplifies Green’s Theorem
	CHORUS
	EXAMPLE: different Stokes’ 1
	EXAMPLE: different Stokes’ 2
	EXAMPLE: different Stokes’ 3
	CHORUS
	IT’S IRRELEVANT!!!
	CHORUS
	EXAMPLE: different Stokes’ 4
	CHORUS
	The BIG PICTURE
	PROBLEMS
	PROBLEMS
Chapter 12 - which theorem when
	TITLE
	All the big theorems in a row…
	CHORUS
	EXAMPLE: choice of surface
	EXAMPLE: choice of surface
	CHORUS
	EXAMPLE: open surface flux
	EXAMPLE: open surface flux
	CHORUS
	EXAMPLE: path vs loop integrals
	CHORUS
	Some advice
	The BIG PICTURE
	PROBLEMS
	PROBLEMS
	Acknowledgements
Chapter 13 - forms and fluids
	TITLE
	LET’S HAVE SOME FUN
	BUT SO WHAT?
	CHORUS
	Perfect fluids
	Velocity fields
	CHORUS
	Remember…the material derivative
	The Euler equations
	EXAMPLE: a 3-d steady perfect fluid
	WHAT IS THIS?
	CIRCULATION
	THEOREM: Kelvin’s Theorem
	PROOF of Kelvin
	CHORUS
	Vorticity fields
	CHORUS
	THEOREM: Helmholtz’s Theorem
	YOU CAN SEE: Helmholtz
	PROOF of Helmholtz
	“Let it go… Let it go…”
	EXAMPLES: vortex preservation
	Don’t be discouraged!
	The BIG PICTURE
	PROBLEMS
	PROBLEMS
	Please sign…
Chapter 14 - forms and emag
	TITLE
	LET’S HAVE SOME FUN
	CHORUS
	Everything is Coupled
	CHORUS
	Maxwell’s quadchart
	Maxwell’s equations: vector version
	CHORUS
	Maxwell & the E field
	Maxwell & the B field
	CHORUS
	Faraday & Maxwell 2-forms
	EXAMPLE: from vectors to forms
	Maxwell’s equations: forms version
	BUT SO WHAT?
	Don’t be discouraged!
	BONUS! Tensor fields
	The BIG PICTURE
	PROBLEMS
	PROBLEMS
	ACKNOWLEDGEMENTS
	Please sign…
Chapter 15 - forms and data
	TITLE
	LET’S HAVE SOME FUN
	Computing area from data
	DETAILS: computing area
	CHORUS
	What’s it good for?
	CHORUS
	Centroids & moments
	CHORUS
	Computing volume from data
	DETAILS: computing volume
	DETAILS: computing volume
	CHORUS
	The Earth is round!
	Surface area from data
	DETAILS: surface area
	CHORUS
	But what about…?
	The BIG PICTURE
	PROBLEMS
	PROBLEMS
	ACKNOWLEDGEMENTS
BLUE 4 INTERLUDE
	THE END…?
	PAUSE…
	CHORUS
	Dimension of \"physical\" systems
	CHORUS
	CASE: dynamical systems
	CASE: machine learning
	CHORUS
	ONWARD!
Chapter 16 - differential forms in n-d
	TITLE
	CHORUS
	Let\'s work in N-D
	CHORUS
	DEFINITION: linear k-forms
	Basis 1/2/3-forms & determinants
	Basis k-forms & determinants
	EXAMPLE: basis forms
	CHORUS
	Wedge Machine!
	FACTS: the wedge product
	EXAMPLE: wedge it up
	CHORUS
	EXAMPLE: form fields
	EXAMPLE: flux forms
	SUMMARY
	BUT SO WHAT?
	CHORUS
	RECALL: time series data
	Leading vs. Lagging
	Parametric curves & oriented area
	Who\'s in the lead?
	So many questions
	Multiple signals
	MOTIVATION: forms in n-D
	CHORUS
	The BIG PICTURE
	PROBLEMS
	PROBLEMS
Chapter 17 - calculus of forms
	TITLE
	CHORUS
	The exterior derivative: induction
	The exterior derivative: intuition
	EXAMPLE: derivatives of form fields
	CHORUS
	RULES: Linearity
	RULES: Product
	EXAMPLE: grad, div, & the product rule
	CHORUS
	IMPORTANT! d^2=0
	PROOF: d^2=0
	CHORUS
	Remember…
	Integration: 1, 2, 3, …
	BONUS! Manifolds
	Parameterized domains
	FORMULA: integrating k-forms
	CHORUS
	EXAMPLE: a 3-form field integral
	EXAMPLE: integral on a torus in 4-d
	CASE: Hamiltonian optics
	CASE: the brightness 4-form
	CHORUS
	The BIG PICTURE
	PROBLEMS
	PROBLEMS
	Please sign…
Chapter 18 - Stokes theorem
	TITLE
	CHORUS
	THEOREM: Stokes’ Theorem
	This is the End
	THINK!
	The FTIC is the Key
	PROOF: d^2=0 REDUX
	CHORUS
	RECALL: integration be parts
	Stokes\' & integration by parts
	CHORUS
	CASES: Stokes\' in advanced math
	CHORUS
	It\'s about time (series)
	Stokes\' FTW
	The Lead Matrix
	THINK: why Stokes\' helps
	CASE: discrete time sampling
	THINK! & don\'t stop…
	CHORUS
	TSSM
	The BIG PICTURE
	PROBLEMS
	PROBLEMS
	ACKNOWLEDGEMENTS
BLUE 4 VISION
	TITLE
	un fulgore
	CHORUS
	LINEAR ALGEBRA
	DYNAMICAL SYSTEMS
	PDEs
	CHORUS
	ALGEBRA
	ANALYSIS
	COMBINATORICS
	GEOMETRY
	TOPOLOGY
	CHORUS
	SO MUCH MORE!
	The BIG PICTURE
BLUE 4 CLOSE
	SCENE 24
	COVER
	About the author
	REFERENCES
	Where credit is due
	Publisher of Beautiful Mathematics




نظرات کاربران