دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش:
نویسندگان: Robert Ghrist
سری:
ISBN (شابک) : 9781944655112
ناشر:
سال نشر: 2018
تعداد صفحات: 464
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 242 مگابایت
در صورت تبدیل فایل کتاب Calculus BLUE Multivariable Vol 4: Fields به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب Calculus BLUE Multivariable جلد 4: فیلدها نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
BLUE 4 INTRO COVER Title Page Table of Contents INSTRUCTIONS LET’S GO! SCENE 23 BLUE 4 PROLOGUE TITLE CHORUS FIELDS CHORUS Scalar & vector fields Flow fields Form fields CHORUS Algebra! Derivatives! Integrals! CHORUS THE BIG THREE CHORUS This is the End BUT SO WHAT? Work & flux Fluid dynamics Electromagnetics Medical imaging data Time series data CHORUS SO MUCH MORE! Chapter 1 - fields TITLE CHORUS What is a -field? CHORUS EXAMPLE: gravitational fields Vector fields vs. flowlines IT’S COMPLICATED CHORUS EXAMPLE: planar vector fields EXAMPLE: radial vector fields BUT SO WHAT? CASE: fluids & gravity CASE: electromagnetic fields CHORUS Derivatives? Matrix fields! Taylor? Polynomial fields! Physics? Tensor fields! RELAX!!! CHORUS Continuous fields The BIG PICTURE PROBLEMS PROBLEMS Chapter 2 - path integrals TITLE CHORUS BUT WHY? CHORUS DEFINITION: scalar path integral The BIG IDEA EXAMPLE: 2-d scalar path integral CHORUS THINK ABOUT IT The FACTS: path integrals CHORUS IMPORTANT! CHORUS EXAMPLE: paths in 3-d The BIG PICTURE PROBLEMS PROBLEMS Chapter 3 - integrating 1-forms TITLE CHORUS Vector path integrals BUT WHY? CHORUS DEFINITION: vector path integral CHORUS IT’S TIME! EXAMPLE: 1-forms EXAMPLE: 1-form fields CHORUS Gradient 1-forms CHORUS DEFINITION: integrating 1-forms EXAMPLE: integrating a 1-form field EXAMPLE: a loop integral Vectors or 1-forms? CHORUS The BIG PICTURE PROBLEMS PROBLEMS Chapter 4 - independence of path TITLE CHORUS A 1-FORM FIELD EXAMPLE: the gravitational 1-form CHORUS EXAMPLE: linear vs. rotational CHORUS THEOREM: Independence of Path Theorem PROOF Hello again, FTIC! CHORUS Detecting gradients EXAMPLE: gradient 1-forms? EXAMPLE: computing potentials CHORUS FTIC = key The BIG PICTURE PROBLEMS PROBLEMS Chapter 5 - circ work and flux TITLE CHORUS Breaking the 4th wall BUT WHY? CHORUS The WORK 1-form EXAMPLE: computing work CHORUS EXAMPLE: circulation EXAMPLE: work & potential CHORUS The FLUX 1-form WORK vs FLUX EXAMPLE: computing flux EXAMPLE: flux across a loop CHORUS The BIG PICTURE PROBLEMS PROBLEMS Chapter 6 - Greens theorem TITLE CHORUS EXAMPLE: an interesting 1-form EXAMPLE: an interesting 1-form CHORUS THEOREM: Green’s Theorem The BIG IDEA EXAMPLE: circulation & flux CHORUS EXAMPLE: differentiability matters EXAMPLE: orientation matters EXAMPLE: orientation matters BEWARE! Orientation CHORUS PROOF PROOF CHORUS BONUS! Applications of Green’s FORESHADOWING The BIG PICTURE PROBLEMS PROBLEMS Please sign… Chapter 7 - grad-curl-div TITLE CHORUS THEOREM: Green’s Theorem CHORUS 2-d curl & divergence Curl vs. Div in 2-d EXAMPLE: curl in 2-d EXAMPLE: divergence in 2-d CHORUS Divergence in 3-d EXAMPLE: divergence and volume Curl spinners in 3-d Curl and circulation densities Curl in 2-d as a vector field EXAMPLE: curl in 3-d NOTATION: del operator CHORUS IMPORTANT! CHORUS SO MUCH MORE! The BIG PICTURE PROBLEMS PROBLEMS Please sign… Chapter 8 - Euclidean forms in 3D TITLE CHORUS LET\'S WORK in 3-D! LET’S THINK about 1-forms DEFINITION: basis 2-forms EXAMPLE: Euclidean 2-forms in 3-D CHORUS EXAMPLE: 2-form fields in 3-D EXAMPLE: flux 2-forms EXAMPLE: flux 2-form fields CHORUS The wedge product 3-forms and 3-form fields What lies beyond 3-forms? CHORUS Derivatives of form fields EXAMPLE: derivatives of forms EXAMPLE: the curl as derivative EXAMPLE: divergence as derivative CHORUS IMPORTANT! d^2=0 SUMMARY The BIG PICTURE PROBLEMS PROBLEMS Chapter 9 - integrating 2-forms TITLE CHORUS Integrating planar 2-forms CHORUS This simplifies Green’s Theorem CHORUS Remember… What do 2-forms eat? FORMULA: integrating 2-forms Concerning orientation A field of normals CHORUS EXAMPLE: 2-form field integral EXAMPLE: 2-form field integral CHORUS EXAMPLE: using symmetry CHORUS BUT SO WHAT? Flux 2-form of a vector field FLUX illustrated EXAMPLE: easy flux EXAMPLE: hard flux EXAMPLE: hard flux CHORUS The BIG PICTURE PROBLEMS PROBLEMS Chapter 10 - Gauss theorem TITLE CHORUS Green’s Theorem REDUX 3-d! CHORUS THEOREM: Gauss’s theorem EXAMPLE: flux across a cube EXAMPLE: flux across a cube CHORUS EXAMPLE: I love Gauss! CHORUS I love avocados! EXAMPLE: region between spheres EXAMPLE: region between spheres CHORUS The BIG PICTURE PROBLEMS PROBLEMS Chapter 11 - Stokes theorem TITLE CHORUS Green’s Theorem REDUX THEOREM: Stokes’ Theorem The BIG IDEA CHORUS EXAMPLE: easy Stokes’ Theorem This simplifies Green’s Theorem CHORUS EXAMPLE: different Stokes’ 1 EXAMPLE: different Stokes’ 2 EXAMPLE: different Stokes’ 3 CHORUS IT’S IRRELEVANT!!! CHORUS EXAMPLE: different Stokes’ 4 CHORUS The BIG PICTURE PROBLEMS PROBLEMS Chapter 12 - which theorem when TITLE All the big theorems in a row… CHORUS EXAMPLE: choice of surface EXAMPLE: choice of surface CHORUS EXAMPLE: open surface flux EXAMPLE: open surface flux CHORUS EXAMPLE: path vs loop integrals CHORUS Some advice The BIG PICTURE PROBLEMS PROBLEMS Acknowledgements Chapter 13 - forms and fluids TITLE LET’S HAVE SOME FUN BUT SO WHAT? CHORUS Perfect fluids Velocity fields CHORUS Remember…the material derivative The Euler equations EXAMPLE: a 3-d steady perfect fluid WHAT IS THIS? CIRCULATION THEOREM: Kelvin’s Theorem PROOF of Kelvin CHORUS Vorticity fields CHORUS THEOREM: Helmholtz’s Theorem YOU CAN SEE: Helmholtz PROOF of Helmholtz “Let it go… Let it go…” EXAMPLES: vortex preservation Don’t be discouraged! The BIG PICTURE PROBLEMS PROBLEMS Please sign… Chapter 14 - forms and emag TITLE LET’S HAVE SOME FUN CHORUS Everything is Coupled CHORUS Maxwell’s quadchart Maxwell’s equations: vector version CHORUS Maxwell & the E field Maxwell & the B field CHORUS Faraday & Maxwell 2-forms EXAMPLE: from vectors to forms Maxwell’s equations: forms version BUT SO WHAT? Don’t be discouraged! BONUS! Tensor fields The BIG PICTURE PROBLEMS PROBLEMS ACKNOWLEDGEMENTS Please sign… Chapter 15 - forms and data TITLE LET’S HAVE SOME FUN Computing area from data DETAILS: computing area CHORUS What’s it good for? CHORUS Centroids & moments CHORUS Computing volume from data DETAILS: computing volume DETAILS: computing volume CHORUS The Earth is round! Surface area from data DETAILS: surface area CHORUS But what about…? The BIG PICTURE PROBLEMS PROBLEMS ACKNOWLEDGEMENTS BLUE 4 INTERLUDE THE END…? PAUSE… CHORUS Dimension of \"physical\" systems CHORUS CASE: dynamical systems CASE: machine learning CHORUS ONWARD! Chapter 16 - differential forms in n-d TITLE CHORUS Let\'s work in N-D CHORUS DEFINITION: linear k-forms Basis 1/2/3-forms & determinants Basis k-forms & determinants EXAMPLE: basis forms CHORUS Wedge Machine! FACTS: the wedge product EXAMPLE: wedge it up CHORUS EXAMPLE: form fields EXAMPLE: flux forms SUMMARY BUT SO WHAT? CHORUS RECALL: time series data Leading vs. Lagging Parametric curves & oriented area Who\'s in the lead? So many questions Multiple signals MOTIVATION: forms in n-D CHORUS The BIG PICTURE PROBLEMS PROBLEMS Chapter 17 - calculus of forms TITLE CHORUS The exterior derivative: induction The exterior derivative: intuition EXAMPLE: derivatives of form fields CHORUS RULES: Linearity RULES: Product EXAMPLE: grad, div, & the product rule CHORUS IMPORTANT! d^2=0 PROOF: d^2=0 CHORUS Remember… Integration: 1, 2, 3, … BONUS! Manifolds Parameterized domains FORMULA: integrating k-forms CHORUS EXAMPLE: a 3-form field integral EXAMPLE: integral on a torus in 4-d CASE: Hamiltonian optics CASE: the brightness 4-form CHORUS The BIG PICTURE PROBLEMS PROBLEMS Please sign… Chapter 18 - Stokes theorem TITLE CHORUS THEOREM: Stokes’ Theorem This is the End THINK! The FTIC is the Key PROOF: d^2=0 REDUX CHORUS RECALL: integration be parts Stokes\' & integration by parts CHORUS CASES: Stokes\' in advanced math CHORUS It\'s about time (series) Stokes\' FTW The Lead Matrix THINK: why Stokes\' helps CASE: discrete time sampling THINK! & don\'t stop… CHORUS TSSM The BIG PICTURE PROBLEMS PROBLEMS ACKNOWLEDGEMENTS BLUE 4 VISION TITLE un fulgore CHORUS LINEAR ALGEBRA DYNAMICAL SYSTEMS PDEs CHORUS ALGEBRA ANALYSIS COMBINATORICS GEOMETRY TOPOLOGY CHORUS SO MUCH MORE! The BIG PICTURE BLUE 4 CLOSE SCENE 24 COVER About the author REFERENCES Where credit is due Publisher of Beautiful Mathematics