دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش:
نویسندگان: Aldo G. S. Ventre
سری:
ISBN (شابک) : 3031205480, 9783031205484
ناشر: Springer
سال نشر: 2023
تعداد صفحات: 529
[530]
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 10 Mb
در صورت تبدیل فایل کتاب Calculus and Linear Algebra: Fundamentals and Applications به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب حساب دیفرانسیل و انتگرال و جبر خطی: مبانی و کاربردها نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این کتاب درسی پوشش جامعی از مبانی حساب دیفرانسیل و انتگرال، جبر خطی و هندسه تحلیلی ارائه می دهد. این ارائه که برای دانشجویان لیسانس در علوم، مهندسی، معماری، اقتصاد در نظر گرفته شده است، مستقل است و توسط نمودارهای متعدد پشتیبانی می شود تا تجسم را تسهیل کند و همچنین شهود خوانندگان را تحریک کند. برهان قضایا دقیق است، اما به روشی ساده و جامع ارائه شده است. این کتاب با تعادل خوب بین جبر، هندسه و تجزیه و تحلیل، خوانندگان را راهنمایی می کند تا از این نظریه برای حل معادلات دیفرانسیل استفاده کنند. بسیاری از مسائل و تمرین های حل شده گنجانده شده است. انتظار میرود که دانشآموزان یک پیشزمینه قوی و نگرش همهکاره نسبت به حساب دیفرانسیل و انتگرال، جبر و هندسه کسب کنند، که بعداً میتواند برای کسب مهارتهای جدید در رشتههای علمی پیشرفتهتر، مانند بیوانفورماتیک، مهندسی فرآیند، و مالی استفاده شود. در عین حال، به مربیان اطلاعات و الهامات گسترده ای برای آماده سازی دوره های خود ارائه می شود.
This textbook offers a comprehensive coverage of the fundamentals of calculus, linear algebra and analytic geometry. Intended for bachelor’s students in science, engineering, architecture, economics, the presentation is self-contained, and supported by numerous graphs, to facilitate visualization and also to stimulate readers’ intuition. The proofs of the theorems are rigorous, yet presented in straightforward and comprehensive way. With a good balance between algebra, geometry and analysis, this book guides readers to apply the theory to solve differential equations. Many problems and solved exercises are included. Students are expected to gain a solid background and a versatile attitude towards calculus, algebra and geometry, which can be later used to acquire new skills in more advanced scientific disciplines, such as bioinformatics, process engineering, and finance. At the same time, instructors are provided with extensive information and inspiration for the preparation of their own courses.
Preface Contents 1 Language. Sets 1.1 Language 1.2 Sets References 2 Numbers and Propositions 2.1 The Natural Numbers 2.1.1 Counting Problems 2.2 Prime Numbers 2.2.1 Codes and Decoding 2.3 Integer Numbers 2.4 Rational Numbers 2.4.1 Representations of Rational Numbers 2.4.2 The Numeration 2.5 The Real Numbers 2.5.1 Density 2.5.2 Closure of a Set with Respect to an Operations 2.6 Abbreviated Notations 2.6.1 There is at Least One ... 2.7 The Implication 2.7.1 Implication and Logical Equivalence 2.7.2 The Theorem 2.7.3 Tertium Non Datur 2.7.4 Proofs in Science 2.7.5 Visual Proofs 2.7.6 The Inverse Theorem 2.7.7 Irrationality of sqrt2 2.7.8 The Pythagorean School 2.7.9 Socrates and the Diagonal of the Square 2.8 The Inductive Method and the Induction Principle 2.8.1 Necessary Condition. Sufficient Condition 2.9 Intuition 2.10 Mathematics and Culture 2.10.1 On Education 2.10.2 Individual Study and Work References 3 Relations 3.1 Introduction 3.2 Cartesian Product of Sets. Relations 3.3 Binary Relations 3.3.1 Orderings 3.3.2 The Power Set 3.3.3 Total Order 3.4 Preferences 3.4.1 Indifference 3.5 Equivalence Relations 3.5.1 Partitions of a Set 3.5.2 Remainder Classes References 4 Euclidean Geometry 4.1 Introduction 4.2 First Axioms 4.3 The Axiomatic Method 4.3.1 Further Axioms of Euclidean Geometry 4.4 The Refoundation of Geometry 4.5 Geometric Figures 4.5.1 Convex and Concave Figures 4.5.2 Angles 4.5.3 Relations Between Lines and Planes 4.5.4 Relations Between Planes 4.5.5 Projections 4.5.6 The Angle of a Line and a Plane 4.5.7 Dihedrals 4.5.8 Perpendicular Planes 4.5.9 Symmetries 4.5.10 Similar Polygons 4.6 Thales’ Theorem References 5 Functions 5.1 Introduction 5.2 Equipotent Sets. Infinite Sets, Finite Sets 5.3 Hotel Hilbert 5.4 Composite Functions 5.5 Restriction and Extension of a Function Bibliography 6 The Real Line 6.1 Introduction 6.2 The Coordinate System of the Axis 6.2.1 The Measure of a Segment 6.2.2 The Coordinate System of an Axis 6.3 Equalities and Identities. Equivalent Equations 6.3.1 Examples 6.3.2 Forming an Equation from Given Information 6.4 Order in R 6.4.1 Evaluating an Inequality to Making a Decision 6.5 Intervals, Neighborhoods, Absolute Value 6.5.1 Exercises 6.6 The Extended Set of Real Numbers 6.6.1 Examples 6.7 Upper Bounds and Lower Bounds 6.8 Commensurability and Real Numbers 6.9 Separate Sets and Contiguous Sets Bibliography 7 Real-Valued Functions of a Real Variable. The Line 7.1 The Cartesian Plane 7.1.1 Quadrants 7.1.2 Distance 7.2 Real-Valued Functions of a Real Variable 7.2.1 Extrema of a Real-Valued Function 7.2.2 The Graph of a Real-Valued Function 7.2.3 Graph and Curve 7.3 Lines in the Cartesian Plane 7.3.1 The Constant Function 7.3.2 The Identical Function 7.3.3 The Function f ∶ x→ kx 7.3.4 The Function f ∶ x → kx + n 7.3.5 The Linear Equation 7.3.6 The Parametric Equations of the Line 7.4 Parallel Lines 7.4.1 Parallel Lines Represented by Parametric Equations 7.4.2 Parallel Lines Represented by Ordinary Equations 7.4.3 Parallel Lines. Exercises 7.5 The Absolute Value Function 7.6 A Linear Model 7.7 Invertible Functions and Inverse Functions Bibliography 8 Circular Functions 8.1 Introduction 8.1.1 The Equation of the Circumference 8.1.2 The Goniometric Circumference 8.1.3 Sine, Cosine and Tangent 8.1.4 Further Goniometric Identities 8.1.5 The Graphs of Sinx, Cosx and Tanx Bibliography 9 Geometric and Numeric Vectors 9.1 n-Tuples of Real Numbers 9.1.1 Linear Combinations of n-Tuples 9.2 Scalars and Vectors 9.3 Applied Vectors and Free Vectors 9.4 Addition of Free Vectors 9.5 Multiplication of a Scalar by a Free Vector 9.6 Properties of Operations with Free Vectors 9.7 Component Vectors of a Plane Vector 9.8 Space Coordinate System and Vectors 9.9 Unit Vectors 9.10 The Sphere Bibliography 10 Scalar Product. Lines and Planes 10.1 Introduction 10.2 Scalar Product 10.2.1 Orthogonal Projections of a Vector 10.2.2 Scalar Product in Terms of the Components 10.3 Scalar Product and Orthogonality 10.3.1 Angles of Lines and Vectors 10.3.2 Orthogonal Lines in the Plane 10.4 The Equation of the Plane 10.5 Perpendicular Lines and Planes Bibliography 11 Systems of Linear Equations. Reduction 11.1 Linear Equations 11.1.1 Systems of Linear Equations 11.2 Equivalent Systems 11.2.1 Elementary Operations 11.3 Reduced Systems 11.4 Exercises Bibliography 12 Vector Spaces 12.1 Introduction 12.1.1 Complex Numbers 12.2 Operations 12.3 Fields- 12.4 Vector Spaces 12.5 Linear Dependence and Linear Independence 12.6 Finitely Generated Vector Spaces. Bases 12.7 Vector Subspaces 12.7.1 Spanned Subspaces 12.8 Dimension 12.9 Isomorphism 12.10 Identification of Geometric and Numerical Vector Spaces 12.11 Scalar Product in Rn 12.12 Exercises Bibliography 13 Matrices 13.1 First Concepts 13.2 Reduced Matrices 13.3 Rank 13.4 Matrix Reduction Method and Rank 13.5 Rouché-Capelli’s Theorem 13.6 Compatibility of a Reduced System 13.7 Square Matrices 13.8 Exercises Bibliography 14 Determinants and Systems of Linear Equations 14.1 Determinants 14.2 Properties of the Determinants 14.3 Submatrices and Minors 14.4 Cofactors 14.5 Matrix Multiplication 14.6 Inverse and Transpose Matrices 14.7 Systems of Linear Equations and Matrices 14.8 Rank of a Matrix and Minors 14.8.1 Matrix A Has a Non-zero Minor of Maximal Order 14.8.2 Calculating the Rank of a Matrix Via Kronecker’s Theorem 14.9 Cramer’s Rule 14.9.1 Homogeneous Linear Systems 14.9.2 Associated Homogeneous Linear System 14.10 Exercises Bibliography 15 Lines and Planes 15.1 Introduction 15.2 Parallel Lines 15.3 Coplanar Lines and Skew Lines 15.4 Line Parallel to Plane. Perpendicular Lines. Perpendicular Planes 15.5 Intersection of Planes 15.6 Bundle of Planes Bibliography 16 Algorithms 16.1 Introduction 16.2 Greatest Common Divisor: The Euclidean Algorithm 16.3 Regular Subdivision of a Segment 16.4 Gauss Elimination 16.5 Conclusion Bibliography 17 Elementary Functions 17.1 Introduction 17.2 Monotonic Functions 17.3 Invertible Functions and Inverse Functions 17.4 The Power 17.4.1 Power with Natural Exponent 17.4.2 Power with Non-Zero Integer Exponent 17.4.3 Null Exponent 17.5 Even Functions, Odd Functions 17.6 The Root 17.6.1 Further Properties of the Power with Rational Exponent 17.7 Power with Real Exponent 17.8 The Exponential Function 17.8.1 Properties of the Exponential Function 17.8.2 The Number of Napier 17.9 The Logarithm 17.10 Conclusion 17.11 Exercises Bibliography 18 Limits 18.1 Introduction 18.2 Definition 18.2.1 Specific Applications of Definition 18.1 18.2.2 Uniqueness of the Limit 18.3 Limits of Elementary Functions 18.4 Properties of Limits 18.4.1 Operations 18.4.2 Permanence of the Sign 18.4.3 Comparison 18.4.4 Limit of the Composite Function 18.4.5 Right and Left Limits 18.4.6 More on the Limits of Elementary Functions 18.4.7 Solved Problems 18.4.8 Supplementary Problems 18.5 Asymptotes 18.5.1 Vertical Asymptotes 18.5.2 Horizontal Asymptotes 18.5.3 Oblique Asymptotes Bibliography 19 Continuity 19.1 Continuous Functions 19.2 Properties of Continuous Functions 19.2.1 Uniform Continuity 19.3 Discontinuity 19.4 Domain Convention 19.5 Curves 19.6 Continuous Functions and Inverse Functions 19.7 The Inverse Functions of the Circular Functions 19.8 Continuity of Elementary Functions 19.9 Solved Problems Bibliography 20 Derivative and Differential 20.1 Introduction 20.2 Definition of Derivative 20.3 Geometric Meaning of the Derivative 20.4 First Properties 20.4.1 Derivatives of Some Elementary Functions 20.5 Operations Involving Derivatives 20.6 Composite Functions. The Chain Rule 20.6.1 Derivatives of Some Elementary Functions 20.7 Derivatives of the Inverse Functions 20.7.1 Derivatives of the Inverses of the Circular Functions 20.8 The Derivative of the Function (f(x))g(x) and the Power Rule 20.8.1 Summary of Formulas and Differentiation Rules 20.9 Right and Left-Hand Derivatives 20.10 Higher Order Derivatives 20.11 Infinitesimals 20.12 Infinities 20.13 Differential 20.13.1 Differentials of Higher Order 20.14 Solved Problems Bibliography 21 Theorems of Differential Calculus 21.1 Introduction 21.2 Extrema of a Real-Valued Function of a Single Variable 21.3 Fermat’s and Rolle’s Theorems 21.4 Lagrange’s Theorem and Consequences 21.5 Comments on Fermat’s Theorem 21.5.1 Searching for Relative Maximum and Minimum Points 21.5.2 Searching for the Absolute Maximum and Minimum of a Function 21.6 de l’Hospital’s Rule 21.7 More on the Indeterminate Forms 21.8 Parabola with Vertical Axis 21.9 Approximation 21.9.1 Quadratic Approximation 21.10 Taylor’s Formula 21.11 Convexity, Concavity, Points of Inflection 21.11.1 Convexity and Concavity 21.11.2 Points of Inflection 21.11.3 Defiladed Objects 21.12 Drawing the Graph of a Function 21.13 Solved Problems Bibliography 22 Integration 22.1 Introduction 22.2 The Definite Integral 22.3 Area of a Plane Set 22.4 The Definite Integral and the Areas 22.5 The Integral Function 22.6 Primitive Functions 22.7 The Indefinite Integral 22.7.1 Indefinite Integral Calculation 22.7.2 Some Immediate Indefinite Integrals 22.7.3 A Generalization of Indefinite Integration Formulas 22.8 Integration by Parts 22.8.1 Indefinite Integration Rule by Parts 22.8.2 Definite Integration Rule by Parts 22.9 Area of a Normal Domain 22.10 Trigonometric Integrals 22.10.1 Trigonometric Substitutions 22.11 Improper Integrals 22.11.1 Improper Integrals Over Bounded Intervals 22.11.2 Improper Integrals Over Unbounded Intervals 22.12 Problems Solved. Indefinite and Improper Integrals Bibliography 23 Functions of Several Variables 23.1 Introduction 23.2 The Real n-Dimensional Space 23.3 Examples of Functions of Several Variables 23.4 Real-Valued Functions of Two Real Variables 23.5 More About the Domain of f(x, y) 23.6 Planes and Surfaces 23.7 Level Curves 23.8 Upper Bounded and Lower Bounded Functions 23.9 Limits 23.10 Continuity 23.11 Partial Derivatives 23.12 Domains and Level Curves 23.13 Solved Problems 23.14 Partial Derivatives of the Functions of Several Variables 23.15 Partial Derivatives of Higher Order Bibliography 24 Curves and Implicit Functions 24.1 Curves and Graphs 24.2 Regular Curves 24.2.1 Tangent Line to a Regular Curve 24.3 Closed Curves 24.4 Length of a Curve 24.4.1 Problems 24.5 Curvilinear Abscissa 24.6 Derivative of the Composite Functions 24.7 Implicit Functions 24.7.1 Higher Order Derivatives Bibliography 25 Surfaces 25.1 Introduction 25.2 Cylinder 25.3 Cone 25.3.1 Homogeneous Polynomial 25.4 Exercises Bibliography 26 Total Differential and Tangent Plane 26.1 Introduction 26.2 Total Differential 26.3 Vertical Sections of a Surface 26.4 The Tangent Plane to a Surface Bibliography 27 Maxima and Minima. Method of Lagrange Multipliers 27.1 Relative and Absolute Extrema of Functions of Two Variables 27.2 Exercises 27.3 Search for Relative Maxima and Minima 27.4 Absolute Maxima and Minima in R2 27.5 Search for Extrema of a Continuous Function 27.6 Constrained Extrema. Method of Lagrange Multiplier 27.7 Method of Lagrange Multipliers Bibliography 28 Directional Derivatives and Gradient 28.1 Directional Derivatives 28.2 Gradient 28.2.1 Steepest Descent Bibliography 29 Double Integral 29.1 Area of a Plane Set 29.2 Volume of a Solid 29.3 Cylindroid 29.4 Double Integral 29.5 Properties of the Double Integral 29.6 Double Integral Reduction Formulas Bibliography 30 Differential Equations 30.1 Introduction 30.2 Separable Equations 30.3 Exponential Growth and Decay Bibliography Index