دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: [1 ed.]
نویسندگان: Christian Karpfinger
سری:
ISBN (شابک) : 3662654571, 9783662654576
ناشر: Springer
سال نشر: 2022
تعداد صفحات: 1064
[1015]
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 13 Mb
در صورت تبدیل فایل کتاب Calculus and Linear Algebra in Recipes: Terms, phrases and numerous examples in short learning units به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب حساب دیفرانسیل و انتگرال و جبر خطی در دستور العمل ها: اصطلاحات، عبارات و مثال های متعدد در واحدهای آموزشی کوتاه نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این کتاب با مثالهای متعدد، مقدمهای واضح و قابل فهم برای ریاضیات عالی ارائه میکند. نویسنده نشان میدهد که چگونه میتوان مسائل معمولی را به روشی شبیه به دستور پخت حل کرد و مطالب را به واحدهای آموزشی کوتاه و به راحتی قابل هضم تقسیم میکند. در یک دستور غذا؟ این به طور کلی بسیار خوب کار می کند، حتی اگر آشپز خوبی نباشید. این چه ربطی به ریاضیات دارد؟ خوب، شما می توانید بسیاری از مسائل ریاضی را بر اساس دستور العمل حل کنید: آیا نیاز به حل معادله دیفرانسیل Riccati یا تجزیه مقدار منفرد یک ماتریس دارید؟ آن را در این کتاب جستجو کنید، دستور پخت آن را در اینجا پیدا خواهید کرد. دستور العمل برای مسائل از
· حساب دیفرانسیل و انتگرال در یک یا چند متغیر،
· جبر خطی،
· تجزیه و تحلیل برداری،
· نظریه در مورد معادلات دیفرانسیل، معمولی و جزئی،
· نظریه تبدیلات انتگرال،
· نظریه توابع.
از دیگر ویژگیهای این کتاب میتوان به موارد زیر اشاره کرد: span>
· تقسیم ریاضیات عالی به تقریباً 100 فصل با طول تقریباً مساوی. هر فصل تقریباً مطالب یک سخنرانی 90 دقیقهای را پوشش میدهد.
· بسیاری از وظایف، که راهحلهای آنها را میتوان در کتاب کار همراه پیدا کرد.· بسیاری از مسائل در ریاضیات عالی را می توان با کامپیوتر حل کرد. ما همیشه نحوه کار آن با MATLAB® را نشان میدهیم.
برای ویرایش سوم حاضر، کتاب به طور کامل بازبینی شده است و با بخشی در مورد حل مسائل ارزش مرزی برای عادی تکمیل شده است. معادلات دیفرانسیل، با موضوع تخمین باقیمانده برای بسط های تیلور و با روش مشخصه برای معادلات دیفرانسیل جزئی مرتبه 1، و همچنین با چندین مسئله اضافی.
This book provides a clear and easy-to-understand introduction to higher mathematics with numerous examples. The author shows how to solve typical problems in a recipe-like manner and divides the material into short, easily digestible learning units.
Have you ever cooked a 3-course meal based on a recipe? That generally works quite well, even if you are not a great cook. What does this have to do with mathematics? Well, you can solve a lot of math problems recipe-wise: Need to solve a Riccati's differential equation or the singular value decomposition of a matrix? Look it up in this book, you'll find a recipe for it here. Recipes are available for problems from the
· Calculus in one and more variables,
· linear algebra,
· Vector Analysis,
· Theory on differential equations, ordinary and partial,
· Theory of integral transformations,
· Function theory.
Other features of this book include:
· The division of Higher Mathematics into approximately 100 chapters of roughly equal length. Each chapter covers approximately the material of a 90-minute lecture.
· Many tasks, the solutions to which can be found in the accompanying workbook.· Many problems in higher mathematics can be solved with computers. We always indicate how it works with MATLAB®.
For the present 3rd edition, the book has been completely revised and supplemented by a section on the solution of boundary value problems for ordinary differential equations, by the topic of residue estimates for Taylor expansions and by the characteristic method for partial differential equations of the 1st order, as well as by several additional problems.
Foreword to the Third Edition Preface to the Second Edition Preface to the First Edition Contents 1 Speech, Symbols and Sets 1.1 Speech Patterns and Symbols in Mathematics 1.1.1 Junctors 1.1.2 Quantifiers 1.2 Summation and Product Symbol 1.3 Powers and Roots 1.4 Symbols of Set Theory 1.5 Exercises 2 The Natural Numbers, Integers and Rational Numbers 2.1 The Natural Numbers 2.2 The Integers 2.3 The Rational Numbers 2.4 Exercises 3 The Real Numbers 3.1 Basics 3.2 Real Intervals 3.3 The Absolute Value of a Real Number 3.4 n-th Roots 3.5 Solving Equations and Inequalities 3.6 Maximum, Minimum, Supremum and Infimum 3.7 Exercises 4 Machine Numbers 4.1 b-adic Representation of Real Numbers 4.2 Floating Point Numbers 4.2.1 Machine Numbers 4.2.2 Machine Epsilon, Rounding and Floating Point Arithmetic 4.2.3 Loss of Significance 4.3 Exercises 5 Polynomials 5.1 Polynomials: Multiplication and Division 5.2 Factorization of Polynomials 5.3 Evaluating Polynomials 5.4 Partial Fraction Decomposition 5.5 Exercises 6 Trigonometric Functions 6.1 Sine and Cosine 6.2 Tangent and Cotangent 6.3 The Inverse Functions of the Trigonometric Functions 6.4 Exercises 7 Complex Numbers: Cartesian Coordinates 7.1 Construction of C 7.2 The Imaginary Unit and Other Terms 7.3 The Fundamental Theorem of Algebra 7.4 Exercises 8 Complex Numbers: Polar Coordinates 8.1 The Polar Representation 8.2 Applications of the Polar Representation 8.3 Exercises 9 Linear Systems of Equations 9.1 The Gaussian Elimination Method 9.2 The Rank of a Matrix 9.3 Homogeneous Linear Systems of Equations 9.4 Exercises 10 Calculating with Matrices 10.1 Definition of Matrices and Some Special Matrices 10.2 Arithmetic Operations 10.3 Inverting Matrices 10.4 Calculation Rules 10.5 Exercises 11 LR-Decomposition of a Matrix 11.1 Motivation 11.2 The LR-Decomposition: Simplified Variant 11.3 The LR-Decomposition: General Variant 11.4 The LR-Decomposition-with Column Pivot Search 11.5 Exercises 12 The Determinant 12.1 Definition of the Determinant 12.2 Calculation of the Determinant 12.3 Applications of the Determinant 12.4 Exercises 13 Vector Spaces 13.1 Definition and Important Examples 13.2 Subspaces 13.3 Exercises 14 Generating Systems and Linear (In)Dependence 14.1 Linear Combinations 14.2 The Span of X 14.3 Linear (In)Dependence 14.4 Exercises 15 Bases of Vector Spaces 15.1 Bases 15.2 Applications to Matrices and Systems of Linear Equations 15.3 Exercises 16 Orthogonality I 16.1 Scalar Products 16.2 Length, Distance, Angle and Orthogonality 16.3 Orthonormal Bases 16.4 Orthogonal Decomposition and Linear Combination with Respect to an ONB 16.5 Orthogonal Matrices 16.6 Exercises 17 Orthogonality II 17.1 The Orthonormalization Method of Gram and Schmidt 17.2 The Vector Product and the (Scalar) Triple Product 17.3 The Orthogonal Projection 17.4 Exercises 18 The Linear Equalization Problem 18.1 The Linear Equalization Problem and Its Solution 18.2 The Orthogonal Projection 18.3 Solution of an Over-Determined Linear System of Equations 18.4 The Method of Least Squares 18.5 Exercises 19 The QR-Decomposition of a Matrix 19.1 Full and Reduced QR-Decomposition 19.2 Construction of the QR-Decomposition 19.3 Applications of the QR-Decomposition 19.3.1 Solving a System of Linear Equations 19.3.2 Solving the Linear Equalization Problem 19.4 Exercises 20 Sequences 20.1 Terms 20.2 Convergence and Divergence of Sequences 20.3 Exercises 21 Calculation of Limits of Sequences 21.1 Determining Limits of Explicit Sequences 21.2 Determining Limits of Recursive Sequences 21.3 Exercises 22 Series 22.1 Definition and Examples 22.2 Convergence Criteria 22.3 Exercises 23 Mappings 23.1 Terms and Examples 23.2 Composition, Injective, Surjective, Bijective 23.3 The Inverse Mapping 23.4 Bounded and Monotone Functions 23.5 Exercises 24 Power Series 24.1 The Domain of Convergence of Real Power Series 24.2 The Domain of Convergence of Complex Power Series 24.3 The Exponential and the Logarithmic Function 24.4 The Hyperbolic Functions 24.5 Exercises 25 Limits and Continuity 25.1 Limits of Functions 25.2 Asymptotes of Functions 25.3 Continuity 25.4 Important Theorems about Continuous Functions 25.5 The Bisection Method 25.6 Exercises 26 Differentiation 26.1 The Derivative and the Derivative Function 26.2 Derivation Rules 26.3 Numerical Differentiation 26.4 Exercises 27 Applications of Differential Calculus I 27.1 Monotonicity 27.2 Local and Global Extrema 27.3 Determination of Extrema and Extremal Points 27.4 Convexity 27.5 The Rule of L'Hospital 27.6 Exercises 28 Applications of Differential Calculus II 28.1 The Newton Method 28.2 Taylor Expansion 28.3 Remainder Estimates 28.4 Determination of Taylor Series 28.5 Exercises 29 Polynomial and Spline Interpolation 29.1 Polynomial Interpolation 29.2 Construction of Cubic Splines 29.3 Exercises 30 Integration I 30.1 The Definite Integral 30.2 The Indefinite Integral 30.3 Exercises 31 Integration II 31.1 Integration of Rational Functions 31.2 Rational Functions in Sine and Cosine 31.3 Numerical Integration 31.4 Volumes and Surfaces of Solids of Revolution 31.5 Exercises 32 Improper Integrals 32.1 Calculation of Improper Integrals 32.2 The Comparison Test for Improper Integrals 32.3 Exercises 33 Separable and Linear Differential Equations of First Order 33.1 First Differential Equations 33.2 Separable Differential Equations 33.2.1 The Procedure for Solving a Separable Differential Equation 33.2.2 Initial Value Problems 33.3 The Linear Differential Equation of First Order 33.4 Exercises 34 Linear Differential Equations with Constant Coefficients 34.1 Homogeneous Linear Differential Equations with Constant Coefficients 34.2 Inhomogeneous Linear Differential Equations with Constant Coefficients 34.2.1 Variation of Parameters 34.2.2 Approach of the Right-Hand Side Type 34.3 Exercises 35 Some Special Types of Differential Equations 35.1 The Homogeneous Differential Equation 35.2 The Euler Differential Equation 35.3 Bernoulli's Differential Equation 35.4 The Riccati Differential Equation 35.5 The Power Series Approach 35.6 Exercises 36 Numerics of Ordinary Differential Equations I 36.1 First Procedure 36.2 Runge-Kutta Method 36.3 Multistep Methods 36.4 Exercises 37 Linear Mappings and Transformation Matrices 37.1 Definitions and Examples 37.2 Image, Kernel and the Dimensional Formula 37.3 Coordinate Vectors 37.4 Transformation Matrices 37.5 Exercises 38 Base Transformation 38.1 The Tansformation Matrix of the Composition of Linear Mappings 38.2 Base Transformation 38.3 The Two Methods for Determining Transformation Matrices 38.4 Exercises 39 Diagonalization: Eigenvalues and Eigenvectors 39.1 Eigenvalues and Eigenvectors of Matrices 39.2 Diagonalizing Matrices 39.3 The Characteristic Polynomial of a Matrix 39.4 Diagonalization of Real Symmetric Matrices 39.5 Exercises 40 Numerical Calculation of Eigenvalues and Eigenvectors 40.1 Gerschgorin Circles 40.2 Vector Iteration 40.3 The Jacobian Method 40.4 The QR-Method 40.5 Exercises 41 Quadrics 41.1 Terms and First Examples 41.2 Transformation to Normal Form 41.3 Exercises 42 Schur Decomposition and Singular Value Decomposition 42.1 The Schur Decomposition 42.2 Calculation of the Schur Decomposition 42.3 Singular Value Decomposition 42.4 Determination of the Singular Value Decomposition 42.5 Exercises 43 The Jordan Normal Form I 43.1 Existence of the Jordan Normal Form 43.2 Generalized Eigenspaces 43.3 Exercises 44 The Jordan Normal Form II 44.1 Construction of a Jordan Base 44.2 Number and Size of Jordan Boxes 44.3 Exercises 45 Definiteness and Matrix Norms 45.1 Definiteness of Matrices 45.2 Matrix Norms 45.2.1 Norms 45.2.2 Induced Matrix Norm 45.3 Exercises 46 Functions of Several Variables 46.1 The Functions and Their Representations 46.2 Some Topological Terms 46.3 Consequences, Limits, Continuity 46.4 Exercises 47 Partial Differentiation: Gradient, Hessian Matrix, Jacobian Matrix 47.1 The Gradient 47.2 The Hessian Matrix 47.3 The Jacobian Matrix 47.4 Exercises 48 Applications of Partial Derivatives 48.1 The (Multidimensional) Newton Method 48.2 Taylor Development 48.2.1 The Zeroth, First and Second Taylor Polynomial 48.2.2 The General Taylor polynomial 48.3 Exercises 49 Extreme Value Determination 49.1 Local and Global Extrema 49.2 Determination of Extrema and Extremal Points 49.3 Exercises 50 Extreme Value Determination Under Constraints 50.1 Extrema Under Constraints 50.2 The Substitution Method 50.3 The Method of Lagrange Multipliers 50.4 Extrema Under Multiple Constraints 50.5 Exercise 51 Total Differentiation, Differential Operators 51.1 Total Differentiability 51.2 The Total Differential 51.3 Differential Operators 51.4 Exercises 52 Implicit Functions 52.1 Implicit Functions: The Simple Case 52.2 Implicit Functions: The General Case 52.3 Exercises 53 Coordinate Transformations 53.1 Transformations and Transformation Matrices 53.2 Polar, Cylindrical and Spherical Coordinates 53.3 The Differential Operators in Cartesian Cylindrical and Spherical Coordinates 53.4 Conversion of Vector Fields and Scalar Fields 53.5 Exercises 54 Curves I 54.1 Terms 54.2 Length of a Curve 54.3 Exercises 55 Curves II 55.1 Reparameterization of a Curve 55.2 Frenet–Serret Frame, Curvature and Torsion 55.3 The Leibniz Sector Formula 55.4 Exercises 56 Line Integrals 56.1 Scalar and Vector Line Integrals 56.2 Applications of the Line Integrals 56.3 Exercises 57 Gradient Fields 57.1 Definitions 57.2 Existence of a Primitive Function 57.3 Determination of a Primitive Function 57.4 Exercises 58 Multiple Integrals 58.1 Integration Over Rectangles or Cuboids 58.2 Normal Domains 58.3 Integration Over Normal Domains 58.4 Exercises 59 Substitution for Multiple Variables 59.1 Integration via Polar, Cylindrical, Spherical and Other Coordinates 59.2 Application: Mass and Center of Gravity 59.3 Exercises 60 Surfaces and Surface Integrals 60.1 Regular Surfaces 60.2 Surface Integrals 60.3 Overview of the Integrals 60.4 Exercises 61 Integral Theorems I 61.1 Green's Theorem 61.2 The Plane Theorem of Gauss 61.3 Exercises 62 Integral Theorems II 62.1 The Divergence Theorem of Gauss 62.2 Stokes' Theorem 62.3 Exercises 63 General Information on Differential Equations 63.1 The Directional Field 63.2 Existence and Uniqueness of Solutions 63.3 Transformation to 1st Order Systems 63.4 Exercises 64 The Exact Differential Equation 64.1 Definition of Exact ODEs 64.2 The Solution Procedure 64.2.1 Integrating Factors: Euler's Multiplier 64.3 Exercises 65 Linear Differential Equation Systems I 65.1 The Exponential Function for Matrices 65.2 The Exponential Function as a Solution of Linear ODE Systems 65.3 The Solution for a Diagonalizable A 65.4 Exercises 66 Linear Differential Equation Systems II 66.1 The Exponential Function as a Solution of Linear ODE Systems 66.2 The Solution for a Non-Diagonalizable A 66.3 Exercises 67 Linear Differential Equation Systems III 67.1 Solving ODE Systems 67.2 Stability 67.2.1 Stability of Nonlinear Systems 67.3 Exercises 68 Boundary Value Problems 68.1 Types of Boundary Value Problems 68.2 First Solution Methods 68.3 Linear Boundary Value Problems 68.4 The Method with Green's Function 68.5 Exercises 69 Basic Concepts of Numerics 69.1 Condition 69.2 The Big O Notation 69.3 Stability 69.4 Exercises 70 Fixed Point Iteration 70.1 The Fixed Point Equation 70.2 The Convergence of Iteration Methods 70.3 Implementation 70.4 Rate of Convergence 70.5 Exercises 71 Iterative Methods for Systems of Linear Equations 71.1 Solving Systems of Equations by Fixed Point Iteration 71.2 The Jacobian Method 71.3 The Gauss-Seidel Method 71.4 Relaxation 71.5 Exercises 72 Optimization 72.1 The Optimum 72.2 The Gradient Method 72.3 Newton's Method 72.4 Exercises 73 Numerics of Ordinary Differential Equations II 73.1 Solution Methods for ODE Systems 73.2 Consistency and Convergence of One-Step Methods 73.2.1 Consistency of One-Step Methods 73.2.2 Convergence of One-Step Method 73.3 Stiff Differential Equations 73.4 Boundary Value Problems 73.4.1 Reduction of a BVP to an IVP Remark 73.4.2 Difference Method 73.4.3 Shooting Method 73.5 Exercises 74 Fourier Series: Calculation of Fourier Coefficients 74.1 Periodic Functions 74.2 The Admissible Functions 74.3 Expanding in Fourier Series—Real Version 74.4 Application: Calculation of Series Values 74.5 Expanding in Fourier Series: Complex Version 74.6 Exercises 75 Fourier Series: Background, Theorems and Application 75.1 The Orthonormal System 1/2, cos(kx), sin(kx) 75.2 Theorems and Rules 75.3 Application to Linear Differential Equations 75.4 Exercises 76 Fourier Transform I 76.1 The Fourier Transform 76.2 The Inverse Fourier Transform 76.3 Exercise 77 Fourier Transform II 77.1 The Rules and Theorems for the Fourier Transform 77.2 Application to Linear Differential Equations 77.3 Exercises 78 Discrete Fourier Transform 78.1 Approximate Determination of the Fourier Coefficients 78.2 The Inverse Discrete Fourier Transform 78.3 Trigonometric Interpolation 78.4 Exercise 79 The Laplace Transformation 79.1 The Laplacian Transformation 79.2 The Rules and Theorems for the Laplace Transformation 79.3 Applications 79.3.1 Solving IVPs with Linear ODEs 79.3.2 Solving IVPs with Linear ODE Systems 79.3.3 Solving Integral Equations 79.4 Exercises 80 Holomorphic Functions 80.1 Complex Functions 80.1.1 Domains 80.1.2 Examples of Complex Functions 80.1.3 Visualization of Complex Functions 80.1.4 Realification of Complex Functions 80.2 Complex Differentiability and Holomorphy 80.3 Exercises 81 Complex Integration 81.1 Complex Curves 81.2 Complex Line Integrals 81.3 The Cauchy Integral Theorem and the Cauchy Integral Formula 81.4 Exercises 82 Laurent Series 82.1 Singularities 82.2 Laurent Series 82.3 Laurent Series Development 82.4 Exercises 83 The Residual Calculus 83.1 The Residue Theorem 83.2 Calculation of Real Integrals 83.3 Exercises 84 Conformal Mappings 84.1 Generalities of Conformal Mappings 84.2 Möbius Transformations 84.3 Exercises 85 Harmonic Functions and the Dirichlet Boundary Value Problem 85.1 Harmonic Functions 85.2 The Dirichlet Boundary Value Problem 85.3 Exercises 86 Partial Differential Equations of First Order 86.1 Linear PDEs of First Order with Constant Coefficients 86.2 Linear PDEs of First Order 86.3 The First Order Quasi Linear PDE 86.4 The Characteristics Method 86.5 Exercises 87 Partial Differential Equations of Second Order: General 87.1 First Terms 87.1.1 Linear-Nonlinear, Stationary-Nonstationary 87.1.2 Boundary Value and Initial Boundary Value Conditions 87.1.3 Well-Posed and Ill-Posed Problems 87.2 The Type Classification 87.3 Solution Methods 87.3.1 The Separation Method 87.3.2 Numerical Solution Methods 87.4 Exercises 88 The Laplace or Poisson Equation 88.1 Boundary Value Problems for the Poisson Equation 88.2 Solutions of the Laplace Equation 88.3 The Dirichlet Boundary Value Problem for a Circle 88.4 Numerical Solution 88.5 Exercises 89 The Heat Conduction Equation 89.1 Initial Boundary Value Problems for the Heat Conduction Equation 89.2 Solutions of the Equation 89.3 Zero Boundary Condition: Solution with Fourier Series 89.4 Numerical Solution 89.5 Exercises 90 The Wave Equation 90.1 Initial Boundary Value Problems for the Wave Equation 90.2 Solutions of the Equation 90.3 The Vibrating String: Solution with Fourier Series 90.4 Numerical Solution 90.5 Exercises 91 Solving PDEs with Fourier and Laplace Transforms 91.1 An Introductory Example 91.2 The General Procedure 91.3 Exercises Index