ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Calculus

دانلود کتاب حساب دیفرانسیل

Calculus

مشخصات کتاب

Calculus

دسته بندی: ریاضیات
ویرایش: 8 
نویسندگان:   
سری:  
ISBN (شابک) : 1285740629, 9781305266643 
ناشر: Brooks Cole 
سال نشر: 2015 
تعداد صفحات: 1459 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 77 مگابایت 

قیمت کتاب (تومان) : 32,000



کلمات کلیدی مربوط به کتاب حساب دیفرانسیل: ابتدایی، جبر، ریاضیات محض، ریاضیات، علوم و ریاضی، حساب دیفرانسیل و انتگرال، ریاضیات محض، ریاضیات، علوم و ریاضیات، جبر و مثلثات، ریاضیات، علوم و ریاضیات، کتاب های درسی جدید، مستعمل و اجاره ای، کتاب های درسی و تخصصی ریاضیات، کتاب های درسی جدید، مستعمل و اجاره ای، بوتیک تخصصی



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 23


در صورت تبدیل فایل کتاب Calculus به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب حساب دیفرانسیل نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب حساب دیفرانسیل

موفقیت در درس حسابان شما از اینجا شروع می شود! متون حساب دیفرانسیل و انتگرال جیمز استوارت به دلیلی پرفروش‌ترین متون در سراسر جهان هستند: آن‌ها واضح، دقیق و مملو از نمونه‌های مرتبط و واقعی هستند. استوارت با حساب دیفرانسیل و انتگرال، ویرایش هشتم، نه تنها کاربرد حساب دیفرانسیل و انتگرال را برای کمک به توسعه صلاحیت فنی به شما منتقل می کند، بلکه به شما از زیبایی ذاتی موضوع نیز قدردانی می کند. مثال های صبورانه و کمک های آموزشی داخلی او به شما کمک می کند تا اعتماد به نفس ریاضی خود را ایجاد کنید و به اهداف خود در دوره برسید!


توضیحاتی درمورد کتاب به خارجی

Success in your calculus course starts here! James Stewart's CALCULUS texts are world-wide best-sellers for a reason: they are clear, accurate, and filled with relevant, real-world examples. With CALCULUS, Eighth Edition, Stewart conveys not only the utility of calculus to help you develop technical competence, but also gives you an appreciation for the intrinsic beauty of the subject. His patient examples and built-in learning aids will help you build your mathematical confidence and achieve your goals in the course!



فهرست مطالب

Contents
Preface
To the Student
Calculators, Computers, and Other Graphing Devices
Diagnostic Tests
A Preview of Calculus
Ch 1: Functions and Limits
	1.1: Four Ways to Represent a Function
	1.2: Mathematical Models: A Catalog of Essential Functions
	1.3: New Functions from Old Functions
	1.4: The Tangent and Velocity Problems
	1.5: The Limit of a Function
	1.6: Calculating Limits Using the Limit Laws
	1.7: The Precise Definition of a Limit
	1.8: Continuity
	1: Review
	Principles of Problem Solving
Ch 2: Derivatives
	2.1: Derivatives and Rates of Change
	2.2: The Derivative as a Function
	2.3: Differentiation Formulas
	2.4: Derivatives of Trigonometric Functions
	2.5: The Chain Rule
	2.6: Implicit Differentiation
	2.7: Rates of Change in the Natural and Social Sciences
	2.8: Related Rates
	2.9: Linear Approximations and Differentials
	2: Review
	Problems Plus
Ch 3: Applications of Differentiation
	3.1: Maximum and Minimum Values
	3.2: The Mean Value Theorem
	3.3: How Derivatives Affect the Shape of a Graph
	3.4: Limits at Infinity; Horizontal Asymptotes
	3.5: Summary of Curve Sketching
	3.6: Graphing with Calculus and Calculators
	3.7: Optimization Problems
	3.8: Newton\'s Method
	3.9: Antiderivatives
	3: Review
	Problems Plus
Ch 4: Integrals
	4.1: Areas and Distances
	4.2: The Definite Integral
	4.3: The Fundamental Theorem of Calculus
	4.4: Indefinite Integrals and the Net Change Theorem
	4.5: The Substitution Rule
	4: Review
	Problems Plus
Ch 5: Applications of Integration
	5.1: Areas between Curves
	5.2: Volumes
	5.3: Volumes by Cylindrical Shells
	5.4: Work
	5.5: Average Value of a Function
	5: Review
	Problems Plus
Ch 6: Inverse Functions
	6.1: Inverse Functions
	6.2: Exponential Functions and Their Derivatives
	6.3: Logarithmic Functions
	6.4: Derivatives of Logarithmic Functions
	6.5: Exponential Growth and Decay
	6.6: Inverse Trigonometric Functions
	6.7: Hyperbolic Functions
	6.8: Indeterminate Forms and l\'Hospital\'s Rule
	6: Review
	Problems Plus
Ch 7: Techniques of Integration
	7.1: Integration by Parts
	7.2: Trigonometric Integrals
	7.3: Trigonometric Substitution
	7.4: Integration of Rational Functions by Partial Fractions
	7.5: Strategy for Integration
	7.6: Integration Using Tables and Computer Algebra Systems
	7.7: Approximate Integration
	7.8: Improper Integrals
	7: Review
	Problems Plus
Ch 8: Further Applications of Integration
	8.1: Arc Length
	8.2: Area of a Surface of Revolution
	8.3: Applications to Physics and Engineering
	8.4: Applications to Economics and Biology
	8.5: Probability
	8: Review
	Problems Plus
Ch 9: Differential Equations
	9.1: Modeling with Differential Equations
	9.2: Direction Fields and Euler\'s Method
	9.3: Separable Equations
	9.4: Models for Population Growth
	9.5: Linear Equations
	9.6: Predator-Prey Systems
	9: Review
	Problems Plus
Ch 10: Parametric Equations and Polar Coordinates
	10.1: Curves Defined by Parametric Equations
	10.2: Calculus with Parametric Curves
	10.3: Polar Coordinates
	10.4: Areas and Lengths in Polar Coordinates
	10.5: Conic Sections
	10.6: Conic Sections in Polar Coordinates
	10: Review
	Problems Plus
Ch 11: Infinite Sequences and Series
	11.1: Sequences
	11.2: Series
	11.3: The Integral Test and Estimates of Sums
	11.4: The Comparison Tests
	11.5: Alternating Series
	11.6: Absolute Convergence and the Ratio and Root Tests
	11.7: Strategy for Testing Series
	11.8: Power Series
	11.9: Representations of Functions as Power Series
	11.10: Taylor and Maclaurin Series
	11.11: Applications of Taylor Polynomials
	11: Review
	Problems Plus
Ch 12: Vectors and the Geometry of Space
	12.1: Three-Dimensional Coordinate Systems
	12.2: Vectors
	12.3: The Dot Product
	12.4: The Cross Product
	12.5: Equations of Lines and Planes
	12.6: Cylinders and Quadric Surfaces
	12: Review
	Problems Plus
Ch 13: Vector Functions
	13.1: Vector Functions and Space Curves
	13.2: Derivatives and Integrals of Vector Functions
	13.3: Arc Length and Curvature
	13.4: Motion in Space: Velocity and Acceleration
	13: Review
	Problems Plus
Ch 14: Partial Derivatives
	14.1: Functions of Several Variables
	14.2: Limits and Continuity
	14.3: Partial Derivatives
	14.4: Tangent Planes and Linear Approximations
	14.5: The Chain Rule
	14.6: Directional Derivatives and the Gradient Vector
	14.7: Maximum and Minimum Values
	14.8: Lagrange Multipliers
	14: Review
	Problems Plus
Ch 15: Multiple Integrals
	15.1: Double Integrals over Rectangles
	15.2: Double Integrals over General Regions
	15.3: Double Integrals in Polar Coordinates
	15.4: Applications of Double Integrals
	15.5: Surface Area
	15.6: Triple Integrals
	15.7: Triple Integrals in Cylindrical Coordinates
	15.8: Triple Integrals in Spherical Coordinates
	15.9: Change of Variables in Multiple Integrals
	15: Review
	Problems Plus
Ch 16: Vector Calculus
	16.1: Vector Fields
	16.2: Line Integrals
	16.3: The Fundamental Theorem for Line Integrals
	16.4: Green\'s Theorem
	16.5: Curl and Divergence
	16.6: Parametric Surfaces and Their Areas
	16.7: Surface Integrals
	16.8: Stokes\' Theorem
	16.9: The Divergence Theorem
	16.10: Summary
	16: Review
	Problems Plus
Ch 17: Second-Order Differential Equations
	17.1: Second-Order Linear Equations
	17.2: Nonhomogeneous Linear Equations
	17.3: Applications of Second-Order Differential Equations
	17.4: Series Solutions
	17: Review
Appendixes
	A: Numbers, Inequalities, and Absolute Values
	B: Coordinate Geometry and Lines
	C: Graphs of Second-Degree Equations
	D: Trigonometry
	E: Sigma Notation
	F: Proofs of Theorems
	G: Complex Numbers
	H: Answers to Odd-Numbered Exercises
Index
Reference
Concept Check Answers




نظرات کاربران