دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: [1 ed.] نویسندگان: Gerald L. Bradley, Karl J. Smith سری: ISBN (شابک) : 0131786172, 9780131786172 ناشر: Prentice Hall سال نشر: 1995 تعداد صفحات: 969 [1107] زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 372 Mb
در صورت تبدیل فایل کتاب Calculus به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب حساب دیفرانسیل و انتگرال نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Presents calculus development by integrating technology (with either graphing calculator or computer). The Computational Windows feature offers insights into how technological advances can be used to help understand calculus. Solutions Manual (0-13-178732-2).
Front Cover Title Page Copyright Page Contents About the Authors Preface 1 Preview of Calculus: Functions and Limits 1.1 What Is Calculus? 1.2 Preliminaries 1.3 Lines in the Plane 1.4 Functions and Their Graphs 1.5 The Limit of a Function 1.6 Properties of Limits 1.7 Continuity 1.8 Introduction to the Theory of Limits Chapter 1 Review Guest Essay: "Calculus was Inevitable," by John L. Troutman Book Report: Ethnomathematics by Marcia Ascher 2 Techniques of Differentiation With Selected Applications 2.1 An Introduction to the Derivative: Tangents 2.2 Techniques of Differentiation 2.3 Derivatives of the Trigonometric Functions 2.4 Rates of Change: Rectilinear Motion 2.5 The Chain Rule 2.6 Implicit Differentiation 2.7 Related Rates 2.8 Differentials and Linear Approximations 2.9 The Newton-Raphson Method for Approximating Roots Chapter 2 Review Group Research Project: "Ups and Downs" 3 Additional Applications of the Derivative 3.1 Extreme Values of a Continuous Function 3.2 The Mean Value Theorem 3.3 First-Derivative Test 3.4 Concavity and the Second-Derivative Test 3.5 Infinite Limits and Asymptotes 3.6 Summary of Curve Sketching 3.7 Optimization in the Physical Sciences and Engineering 3.8 Optimization in Business, Economics, and the Life Sciences 3.9 L'Hôpital's Rule 3.10 Antiderivatives Chapter 3 Review Group Research Project: "Wine Barrel Capacity" 4 Integration 4.1 Area as the Limit of a Sum; Summation Notation 4.2 Riemann Sums and the Definite Integral 4.3 The Fundamental Theorems of Calculus; Integration by Substitution 4.4 Introduction to Differential Equations 4.5 The Mean Value Theorem for Integrals; Average Value 4.6 Numerical Integration: The Trapezoidal Rule and Simpson's Rule 4.7 Area Between Two Curves Chapter 4 Review Guest Essay: "Kinematics of Jogging," by Ralph Boas Untitled 5 Exponential, Logarithmic, and Inverse Trigonometric Functions 5.1 Exponential Functions; The Number e 5.2 Inverse Functions; Logarithms 5.3 Derivatives Involving e^x and ln(x) 5.4 Applications Involving Derivatives of e^x and ln(x) 5.5 Integrals Involving e^x and ln(x) 5.6 The Inverse Trigonometric Functions 5.7 An Alternative Approach: The Logarithm as an Integral Chapter 5 Review Group Research Project: "Quality Control" 6 Additional Applications of the Integral 6.1 Volume: Disks, Washers, and Shells 6.2 Arc Length and Surface Area 6.3 Physical Applications: Work, Liquid Force, and Centroids 6.4 Growth, Decay, And First-Order Linear Differential Equations Chapter 6 Review Group Research Project: "Houdini's Escape" Cumulative Review, Chapters 1-6 7 Methods of Integration 7.1 Review of Substitution and Integration by Table 7.2 Integration By Parts 7.3 The Method of Partial Fractions 7.4 Summary of Integration Techniques 7.5 Improper Integrals 7.6 The Hyperbolic and Inverse Hyperbolic Functions Chapter 7 Review Group Research Project: "Buoy Design" 8 Infinite Series 8.1 Sequences and Their Limits 8.2 Introduction to Infinite Series; Geometric Series 8.3 The Integral Test; p-series 8.4 Comparison Tests 8.5 The Ratio Test and the Root Test 8.6 Alternating Series; Absolute and Conditional Convergence 8.7 Power Series 8.8 Taylor and Maclaurin Series Chapter 8 Review Group Research Project: "Elastic Tightrope Project" 9 Polar Coordinates and Parametric Forms 9.1 The Polar Coordinate System 9.2 Graphing in Polar Coordinates 9.3 Area and Tangent Lines in Polar Coordinates 9.4 Parametric Representation of Curves 9.5 Conic Sections: The Parabola 9.6 Conic Sections: The Ellipse and the Hyperbola Chapter 9 Review Group Research Project: "Security System Project" 10 Vectors in the Plane and in Space 10.1 Vectors in the Plane 10.2 Quadric Surfaces and Graphing in Three Dimensions 10.3 The Dot Product 10.4 The Cross Product 10.5 Lines and Planes in Space 10.6 Vector Methods for Measuring Distance in R^3 Chapter 10 Review Group Research Project: "Star Trek Project" 11 Vector Calculus 11.1 Introduction to Vector Functions 11.2 Differentiation and Integration of Vector Functions 11.3 Modeling Ballistics and Planetary Motion 11.4 Unit Tangent and Normal Vectors; Curvature 11.5 Tangential and Normal Components of Acceleration Chapter 11 Review Guest Essay: "For Further Study - The Simulation of Science," by Howard Eves Book Report: Hypatia's Heritage by Margaret Alic Cumulative Review, Chapters 7-11 12 Partial Differentiation 12.1 Functions of Several Variables 12.2 Limits and Continuity 12.3 Partial Derivatives 12.4 Tangent Planes, Approximations, and Differentiability 12.5 Chain Rules 12.6 Directional Derivatives and the Gradient 12.7 Extrema of Functions of Two Variables 12.8 Lagrange Multipliers Chapter 12 Review Group Research Project: "Desertification" 13 Multiple Integration 13.1 Double Integration over Rectangular Regions 13.2 Double Integration over Nonrectangular Regions 13.3 Double Integrals in Polar Coordinates 13.4 Surface Area 13.5 Triple Integrals 13.6 Mass, Moments, and Probability Density Functions 13.7 Cylindrical and Spherical Coordinates 13.8 Jacobians: Change of Variables Chapter 13 Review Group Research Project: "Space-Capsule Design" 14 Vector Analysis 14.1 Properties of a Vector Field: Divergence and Curl 14.2 Line Integrals 14.3 Independence of Path 14.4 Green's Theorem 14.5 Surface Integrals 14.6 Stokes' Theorem 14.7 Divergence Theorem Chapter 14 Review Guest Essay: "Continuous vs. Discrete Mathematics," by William F. Lucas Book Report: The Mathematical Experience by Philip J. Davis and Reuben Hersh Cumulative Review, Chapters 12-14 Appendices A: Theorems by Chapter B: Selected Proofs C: Significant Digits D: Short Table of Integrals E: Answers to Selected Problems Chapter 1 Chapter 2 Chapter 3 Chapter 4 Chapter 5 Chapter 6 Cumulative Review, Chapters 1-6 Chapter 7 Chapter 8 Chapter 9 Chapter 10 Chapter 11 Cumulative Review, Chapters 7-11 Chapter 12 Chapter 13 Chapter 14 Cumulative Review, Chapters 12-14 F: Credits Index Back Cover