ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Cable Based and Wireless Charging Systems for Electric Vehicles: Technology and control, management and grid integration

دانلود کتاب سیستم های شارژ کابلی و بی سیم برای وسایل نقلیه الکتریکی: فناوری و کنترل، مدیریت و یکپارچه سازی شبکه

Cable Based and Wireless Charging Systems for Electric Vehicles: Technology and control, management and grid integration

مشخصات کتاب

Cable Based and Wireless Charging Systems for Electric Vehicles: Technology and control, management and grid integration

ویرایش:  
نویسندگان: , , , ,   
سری: Transportation 
ISBN (شابک) : 1839531789, 9781839531781 
ناشر: The Institution of Engineering and Technology 
سال نشر: 2022 
تعداد صفحات: 353 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 22 Mb 

قیمت کتاب (تومان) : 30,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 5


در صورت تبدیل فایل کتاب Cable Based and Wireless Charging Systems for Electric Vehicles: Technology and control, management and grid integration به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب سیستم های شارژ کابلی و بی سیم برای وسایل نقلیه الکتریکی: فناوری و کنترل، مدیریت و یکپارچه سازی شبکه نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب سیستم های شارژ کابلی و بی سیم برای وسایل نقلیه الکتریکی: فناوری و کنترل، مدیریت و یکپارچه سازی شبکه



خودروهای الکتریکی (EV)، به عنوان بخشی از راه حل کاهش آلودگی هوا و سر و صدا شهری و جلوگیری از تغییرات آب و هوایی مورد استقبال قرار می گیرند. موفقیت آنها به در دسترس بودن و قابل اطمینان بودن امکانات شارژ سریع و کارآمد، هم ثابت و هم در حال حرکت بستگی دارد. اینها به نوبه خود به یکپارچگی مناسب با شبکه، مدیریت بار و قطع، و کاهش بار با استفاده از انرژی تجدیدپذیر و ذخیره بستگی دارد. مدیریت شارژ برای حفظ باتری نیز نقش کلیدی ایفا می کند.

این کتاب آخرین فناوری شارژ را پوشش می دهد. ثابت و بی سیم و در حال حرکت. ادغام شبکه، شبیه سازی، شارژ سریع و مدیریت باتری نیز مورد توجه قرار گرفته است.

هدف این کتاب ارائه دانش عمیق در مورد زیرساخت شارژ EV و مسائل و راه حل های یکپارچه سازی شبکه است. این کتاب به عنوان مرجعی برای محققان دانشگاه و صنعت عمل می‌کند و تقریباً همه جنبه‌های شارژ و ادغام خودروهای برقی در شبکه را پوشش می‌دهد.


توضیحاتی درمورد کتاب به خارجی

Electric vehicles (EV), are being hailed as part of the solution to reducing urban air pollution and noise, and staving off climate change. Their success hinges on the availability and reliability of fast and efficient charging facilities, both stationary and in-motion. These in turn depend on appropriate integration with the grid, load and outage management, and on the mitigation of loads using renewable energy and storage. Charging management to preserve the battery will also play a key role.

This book covers the latest in charging technology; stationary as well as wireless and in-motion. Grid integration, simulations, fast charging, and battery management are also addressed.

The objective of this book is to provide readers with an in-depth knowledge about EV charging infrastructure, and grid integration issues and solutions. The book serves as a reference for researchers in academia and industry, covering almost every aspect of the charging and grid integration of EVs.



فهرست مطالب

Contents
Preface
About the Editors
1 Charging stations and standards
	1.1 Introduction
	1.2 Conductive charging of EVs
		1.2.1 EV charging infrastructure
			1.2.1.1 Charging levels and accessories
			1.2.1.2 Power converters
			1.2.1.3 Communication and protection
		1.2.2 Integration of EV with power grid
			1.2.2.1 Positive impacts
			1.2.2.2 Negative impacts
		1.2.3 International standards and regulations
			1.2.3.1 Charging of EVs
			1.2.3.2 Grid integration
			1.2.3.3 Safety
	1.3 Inductive charging of EVs
		1.3.1 Need for inductive charging of EV
		1.3.2 Modes of IPT
		1.3.3 Operating principle of IPT
			1.3.3.1 Resonant IPT
		1.3.4 Static inductive charging
			1.3.4.1 Overview
			1.3.4.2 Design challenges
				1.3.4.2.1 Charging pad design
				1.3.4.2.2 Misalignment issues
				1.3.4.2.3 Communication link
				1.3.4.2.4 Control system
			1.3.4.3 Recent developments
		1.3.5 Dynamic inductive charging
			1.3.5.1 Overview
			1.3.5.2 Design challenges
				1.3.5.2.1 Segmentation issues
				1.3.5.2.2 Compensation topology
			1.3.5.3 Recent developments
		1.3.6 Bidirectional power flow
		1.3.7 International standards and regulations
			1.3.7.1 General requirements
			1.3.7.2 Health and safety
			1.3.7.3 Communication links
	1.4 Conclusion
	References
2 Grid impact of static and dynamic inductive charging and its mitigation through effective management
	2.1 Introduction
	2.2 Tool for estimating the demand for fast inductive charging stations
		2.2.1 Estimation tool for static inductive charging
		2.2.2 Estimation tool for dynamic inductive charging
	2.3 Impact of inductive charging on the distribution grid
		2.3.1 Impact of static inductive charging on the grid
		2.3.2 Impact of dynamic inductive charging on the grid
	2.4 RES and inductive charging
	2.5 EMS for inductive charging of EVs
		2.5.1 ‘Global’ demand response services
		2.5.2 ‘Local’ demand response services at the substation level
	2.6 Conclusions
	References
3 Wireless power transfer in EVs during motion
	3.1 Introduction
	3.2 WPT systems: basic theories and applications
	3.3 System modeling
	3.4 Circuit and parameter design of the system
		3.4.1 Standards for WPT system
		3.4.2 Types of transmitter and receiver coils
		3.4.3 Types of compensation circuits
		3.4.4 Parameter design methods
		3.4.5 Considerations for soft-switching of inverter
	3.5 Control system for DWC
		3.5.1 Load voltage and power regulation
		3.5.2 Tuning of operating frequency
			3.5.2.1 Optimum frequency for maximum efficiency
			3.5.2.2 Optimum frequency for high efficiency and power transfer
		3.5.3 Load impedance matching
			3.5.3.1 Tracking method
			3.5.3.2 Estimation of mutual inductance
	3.6 Future trends
		3.6.1 Integration of WPT system and renewable energy systems
		3.6.2 Vehicle to grid connection
		3.6.3 V2V power transfer
		3.6.4 Integration of WPT system and motor drive
	3.7 Conclusion
	References
4 Considerations on dynamic inductive charging: optimizing the energy transfer at a high efficiency and experimental implementation
	4.1 Introduction
	4.2 Differences among static and dynamic inductive charging
		4.2.1 Analysis of a dynamic inductive charging system
		4.2.2 Bifurcation in dynamic inductive charging
		4.2.3 Self-inductance variations in dynamic inductive charging
	4.3 Optimizing the power transfer and the efficiency in dynamic inductive charging
	4.4 Control system in dynamic inductive charging
		4.4.1 Primary side control
		4.4.2 Secondary side control
	4.5 Application of the optimization problem and the control system in a circular magnetic coupler
		4.5.1 Application of the optimization problem
		4.5.2 Simulation of the applied control
	4.6 Experimental validation of the proposed optimization and control scheme
		4.6.1 Implementation of the magnetic coupler
		4.6.2 Application of the proposed optimization method in the implemented magnetic coupler
		4.6.3 Implementation of the inverter and the control system
	4.7 Conclusions
	References
5 Converter classification, analysis, and control issues with EV
	5.1 Introduction
	5.2 State of art of power converters used for EV application
	5.3 Quadratic converters
	5.4 Design example of converter for HEV/EV
		5.4.1 Working principle of bidirectional converter
		5.4.2 Steady-state analysis
			5.4.2.1 Boost mode of operation
			5.4.2.2 Buck mode of operation
		5.4.3 Passive components design
		5.4.4 Small-signal analysis
			5.4.4.1 Boost mode of operation
			5.4.4.2 Buck mode of operation
	5.5 Simulation and experimental verifications
	5.6 EV drives and control
	5.7 Conclusion
	References
6 Reducing grid dependency of EV charging using renewable and storage systems
	6.1 EV charging system
		6.1.1 EV charger topologies
		6.1.2 EV charging/discharging strategies
	6.2 Integration of EV charging-home solar PV system
		6.2.1 Operation modes of EVC-HSP system
		6.2.2 Control strategy of EVC-HSP system
		6.2.3 Simulation results of EVC-HSP system
		6.2.4 Experimental results of EVC-HSP system
		6.2.5 Summary designing of an EVC-HSP system
	6.3 Level 3 – fast-charging infrastructure with solar PV and energy storage
		6.3.1 Power converter for FCI
			6.3.1.1 Grid converter
			6.3.1.2 PV converter
			6.3.1.3 EBU and EVB converter
		6.3.2 Control diagram for FCI
			6.3.2.1 Maximum power point tracking control
			6.3.2.2 Electric vehicle battery control
			6.3.2.3 Energy buffer unit control
			6.3.2.4 Grid converter control
		6.3.3 Simulation results for FCI
		6.3.4 Summary designing of an FCI
	6.4 Conclusions
	References
7 Optimal charge control strategies of EVs for enhancement of battery life and lowering the charging cost
	7.1 Introduction
	7.2 Integration of EVs in power systems
		7.2.1 EV chargers
		7.2.2 EV batteries
			7.2.2.1 Battery modeling
			7.2.2.2 Battery degradation cost
			7.2.2.3 BTMS for enhancement of battery life
	7.3 Charge/discharge control strategies of EVs
		7.3.1 Configuration for the optimal charging/discharging strategies of EVs
		7.3.2 Development of the analytical models of EVs
	7.4 Optimal control strategy for integration of EVs to enhance battery life and lower the charging cost
		7.4.1 Optimal EV charging control strategy
		7.4.2 Simulation results and discussions
	7.5 Conclusion
	References
8 Energy management strategies in microgrids with EV and wind generators
	8.1 Introduction
	8.2 Day-ahead MG EMS considering EVs
		8.2.1 Effects of EV’s charging/discharging strategies on the EMS
			8.2.1.1 MG operator strategy
			8.2.1.2 Aggregator strategy
			8.2.1.3 Smart home strategy
			8.2.1.4 User strategy
		8.2.2 Objective functions and constraints for MG-EMS equipped EVs
			8.2.2.1 Objectives
			8.2.2.2 Constraints
		8.2.3 Multi-objective optimization
			8.2.3.1 Traditional mathematical optimization methods
			8.2.3.2 Meta-heuristic methods
		8.2.4 Uncertainty modeling
	8.3 Real-time MG energy management
	8.4 MG Energy management with EVs, seawater desalination, and RESs: a case study
		8.4.1 Overview of the proposed MG
		8.4.2 Mathematical modeling and proposed algorithm
		8.4.3 Numerical results
			8.4.3.1 Effects of the WST on the SWD operation
			8.4.3.2 Effects of the WST on the EVs operation
			8.4.3.3 Effects of the WST on the electrolyzer operation
		8.4.4 Comparative studies
	8.5 Conclusion
	References
9 Optimal energy management strategies for integrating renewable sources and EVs into microgrids
	9.1 Introduction
	9.2 Architecture of microgrids
		9.2.1 Microgrid classification
		9.2.2 Microgrid components
	9.3 Roles of EVs in microgrids
		9.3.1 Smoothing renewable generation
		9.3.2 Economic benefits
		9.3.3 Power/energy reserve
		9.3.4 Mitigating load consumption
		9.3.5 Reliability improvement
		9.3.6 Scheduling power exchange
		9.3.7 Peak shaving
		9.3.8 Frequency regulation using EVs
	9.4 Energy management system of microgrids
		9.4.1 Problem identification
			9.4.1.1 Objective functions
			9.4.1.2 Constraints
		9.4.2 EMS strategies for microgrids with EVs
			9.4.2.1 Classical programming for EMS
			9.4.2.2 Rule-based EMS methods
			9.4.2.3 Stochastic and robust EMS methods
			9.4.2.4 Metaheuristic EMS methods
			9.4.2.5 Artificial intelligence for EMS
			9.4.2.6 Dynamic programming for EMS
			9.4.2.7 Model predictive control EMS
			9.4.2.8 Agent-based EMS methods
	9.5 Conclusions
	References
10 Charging infrastructure layout and planning for plug-in electric vehicles
	10.1 Introduction
	10.2 Electric vehicle supply equipment technology
	10.3 Basic EVSE components
		10.3.1 EVSE
		10.3.2 Electric vehicle connector
		10.3.3 Electric vehicle inlet
	10.4 PEV battery systems
		10.4.1 Battery technology—a power unit of EV
	10.5 Charging system
		10.5.1 Options for electric vehicle supply equipment
	10.6 Battery charger
	10.7 EVSE charger classifications
	10.8 EVSE signaling and communications
	10.9 Vehicle-to-grid
	10.10 Wireless charging
		10.10.1 Inductive and resonant technologies
		10.10.2 Research on wireless charging
	10.11 Vehicle design
		10.11.1 Society of automotive engineers
	10.12 Innovative charging solutions
		10.12.1 Solar charging
		10.12.2 Development hindrances in EVSE infrastructure expansion
		10.12.3 Governmental awareness
		10.12.4 Financial surprises
		10.12.5 Standards
	10.13 Site visit and evaluation and selection
	10.14 Planning and selection of charging station
	10.15 A few initiatives and recommendation for accelerating the development of EVSE infrastructure
	10.16 Feasibility of accelerating EVSE installation
	10.17 Conclusion and recommendations
		10.17.1 Key recommendations
		References
11 Power loss and thermal modeling of charger circuit for reliability enhancement of EV charging systems
	11.1 Introduction
	11.2 Power electronic converters in EVs
	11.3 Modulation and analytical power loss model of power electronic converters
		11.3.1 Conduction power losses in traction inverters
			11.3.1.1 Average and RMS currents in traction inverter
		11.3.2 Analytical model of switching power losses
		11.3.3 Power loss profile in traction inverter
	11.4 Thermal reliability of power converters
		11.4.1 Electro-thermal behavior of power IGBT modules
		11.4.2 Design and FEM analysis of power modules in ANSYS
		11.4.3 3D thermal model of IGBT modules and thermal coupling
	11.5 Conclusion
	References
Index
Back Cover




نظرات کاربران