دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: [8 ed.] نویسندگان: David Levine, Kathryn Szabat, David Stephan سری: ISBN (شابک) : 1292320362, 9781292320366 ناشر: Pearson سال نشر: 2019 تعداد صفحات: 685 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 119 Mb
در صورت تبدیل فایل کتاب Business Statistics: A First Course, Global Edition به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب آمار کسب و کار: دوره اول، نسخه جهانی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
برای دوره های یک ترم آمار کسب و کار. تمرکز بر استفاده از روش های آماری برای تجزیه و تحلیل و تفسیر نتایج به منظور تصمیم گیری های تجاری مبتنی بر داده ها. تمام حوزه های کاربردی کسب و کار با هدایت اصولی که توسط انجمن های بزرگ آماری و علوم تجاری (ASA و DSI)، به علاوه تجربیات متنوع نویسندگان، تنظیم شده است، نسخه هشتم، نسخه جهانی، همچنان به نوآوری و بهبود روش آموزش این دوره به همه دانشجویان ادامه می دهد. با مثالهای جدید، سناریوهای موردی و مشکلات، متن به سنت خود در تمرکز بر تفسیر نتایج، ارزیابی مفروضات و بحث در مورد مراحل بعدی که منجر به تصمیمگیری مبتنی بر دادهها میشود، ادامه میدهد. نویسندگان احساس می کنند که این رویکرد، به جای تمرکز بر محاسبات دستی، بهتر به دانش آموزان در شغل آینده آنها خدمت می کند. این پیشنهاد مختصر که متناسب با نیازهای یک دوره یک ترم ایجاد شده است، بخشی از مجموعه تاسیس شده Berenson/Levine است.
For one-semester business statistics courses. A focus on using statistical methods to analyse and interpret results to make data-informed business decisions Statistics is essential for all business majors, and Business Statistics: A First Course helps students see the role statistics will play in their own careers by providing examples drawn from all functional areas of business. Guided by the principles set forth by major statistical and business science associations (ASA and DSI), plus the authors\' diverse experiences, the 8th Edition, Global Edition, continues to innovate and improve the way this course is taught to all students. With new examples, case scenarios, and problems, the text continues its tradition of focusing on the interpretation of results, evaluation of assumptions, and discussion of next steps that lead to data-informed decision making. The authors feel that this approach, rather than a focus on manual calculations, better serves students in their future careers. This brief offering, created to fit the needs of a one-semester course, is part of the established Berenson/Levine series.
Cover Title Page Copyright Page About the Authors Brief Contents Contents Preface First Things First USING STATISTICS: “The Price of Admission” FTF.1 Think Differently About Statistics Statistics: A Way of Thinking Statistics: An Important Part of Your Business Education FTF.2 Business Analytics: The Changing Face of Statistics “Big Data” FTF.3 Starting Point for Learning Statistics Statistic Can Statistics (pl., statistic) Lie? FTF.4 Starting Point for Using Software Using Software Properly REFERENCES KEY TERMS EXCEL GUIDE EG.1 Getting Started with Excel EG.2 Entering Data EG.3 Open or Save a Workbook EG.4 Working with a Workbook EG.5 Print a Worksheet EG.6 Reviewing Worksheets EG.7 If You use the Workbook Instructions JMP GUIDE JG.1 Getting Started With Jmp JG.2 Entering Data JG.3 Create New Project or Data Table JG.4 Open or Save Files JG.5 Print Data Tables or Report Windows JG.6 Jmp Script Files MINITAB GUIDE MG.1 Getting Started with Minitab MG.2 Entering Data MG.3 Open or Save Files MG.4 Insert or Copy Worksheets MG.5 Print Worksheets TABLEAU GUIDE TG.1 Getting Started with Tableau TG.2 Entering Data TG.3 Open or Save a Workbook TG.4 Working with Data TG.5 Print a Workbook 1 Defining and Collecting Data USING STATISTICS: Defining Moments 1.1 Defining Variables Classifying Variables by Type Measurement Scales 1.2 Collecting Data Populations and Samples Data Sources 1.3 Types of Sampling Methods Simple Random Sample Systematic Sample Stratified Sample Cluster Sample 1.4 Data Cleaning Invalid Variable Values Coding Errors Data Integration Errors Missing Values Algorithmic Cleaning of Extreme Numerical Values 1.5 Other Data Preprocessing Tasks Data Formatting Stacking and Unstacking Data Recoding Variables 1.6 Types of Survey Errors Coverage Error Nonresponse Error Sampling Error Measurement Error Ethical Issues About Surveys CONSIDER THIS: New Media Surveys/Old Survey Errors USING STATISTICS: Defining Moments, Revisited SUMMARY REFERENCES KEY TERMS CHECKING YOUR UNDERSTANDING CHAPTER REVIEW PROBLEMS CASES FOR Chapter 1 Managing Ashland MultiComm Services CardioGood Fitness Clear Mountain State Student Survey Learning with the Digital Cases Chapter 1 EXCEL GUIDE EG1.1 Defining Variables EG1.2 Collecting Data EG1.3 Types of Sampling Methods EG1.4 Data Cleaning EG1.5 Other Data Preprocessing Chapter 1 JMP GUIDE JG1.1 Defining Variables JG1.2 Collecting Data JG1.3 Types of Sampling Methods JG1.4 Data Cleaning JG1.5 Other Preprocessing Tasks Chapter 1 MINITAB GUIDE MG1.1 Defining Variables MG1.2 Collecting Data MG1.3 Types of Sampling Methods MG1.4 Data Cleaning MG1.5 Other Preprocessing Tasks Chapter 1 TABLEAU GUIDE TG1.1 Defining Variables TG1.2 Collecting Data TG1.3 Types of Sampling Methods TG1.4 Data Cleaning TG1.5 Other Preprocessing Tasks 2 Organizing and Visualizing Variables USING STATISTICS: “The Choice Is Yours” 2.1 Organizing Categorical Variables The Summary Table The Contingency Table 2.2 Organizing Numerical Variables The Frequency Distribution The Relative Frequency Distribution and the Percentage Distribution The Cumulative Distribution 2.3 Visualizing Categorical Variables The Bar Chart The Pie Chart and the Doughnut Chart The Pareto Chart Visualizing Two Categorical Variables 2.4 Visualizing Numerical Variables The Stem-and-Leaf Display The Histogram The Percentage Polygon The Cumulative Percentage Polygon (Ogive) 2.5 Visualizing Two Numerical Variables The Scatter Plot The Time-Series Plot 2.6 Organizing a Mix of Variables Drill-down 2.7 Visualizing a Mix of Variables Colored Scatter Plot Bubble Charts PivotChart (Excel) Treemap (Excel, JMP, Tableau) Sparklines (Excel, Tableau) 2.8 Filtering and Querying Data Excel Slicers 2.9 Pitfalls in Organizing and Visualizing Variables Obscuring Data Creating False Impressions Chartjunk USING STATISTICS: “The Choice Is Yours,” Revisited SUMMARY REFERENCES KEY EQUATIONS KEY TERMS CHECKING YOUR UNDERSTANDING CHAPTER REVIEW PROBLEMS CASES for Chapter 2 Managing Ashland MultiComm Services Digital Case CardioGood Fitness The Choice Is Yours Follow-Up Clear Mountain State Student Survey Chapter 2 EXCEL GUIDE EG2.1 Organizing Categorical Variables EG2.2 Organizing Numerical Variables EG2 Charts Group Reference EG2.3 Visualizing Categorical Variables EG2.4 Visualizing Numerical Variables EG2.5 Visualizing Two Numerical Variables EG2.6 Organizing a Mix of Variables EG2.7 Visualizing a Mix of Variables EG2.8 Filtering and Querying Data Chapter 2 JMP GUIDE JG2 JMP Choices for Creating Summaries JG2.1 Organizing Categorical Variables JG2.2 Organizing Numerical Variables JG2.3 Visualizing Categorical Variables JG2.4 Visualizing Numerical Variables JG2.5 Visualizing Two Numerical Variables JG2.6 Organizing a Mix of Variables JG2.7 Visualizing a Mix of Variables JG2.8 Filtering and Querying Data JMP Guide Gallery Chapter 2 MINITAB GUIDE MG2.1 Organizing Categorical Variables MG2.2 Organizing Numerical Variables MG2.3 Visualizing Categorical Variables MG2.4 Visualizing Numerical Variables MG2.5 Visualizing Two Numerical Variables MG2.6 Organizing a Mix of Variables MG2.7 Visualizing a Mix of Variables MG2.8 Filtering and Querying Data Chapter 2 TABLEAU GUIDE TG2.1 Organizing Categorical Variables TG2.2 Organizing Numerical Variables TG2.3 Visualizing Categorical Variables TG2.4 Visualizing Numerical Variables TG2.5 Visualizing Two Numerical Variables TG2.6 Organizing a Mix of Variables TG2.7 Visualizing a Mix of Variables 3 Numerical Descriptive Measures USING STATISTICS: More Descriptive Choices 3.1 Measures of Central Tendency The Mean The Median The Mode 3.2 Measures of Variation and Shape The Range The Variance and the Standard Deviation The Coefficient of Variation Z Scores Shape: Skewness Shape: Kurtosis 3.3 Exploring Numerical Variables Quartiles The Interquartile Range The Five-Number Summary The Boxplot 3.4 Numerical Descriptive Measures for a Population The Population Mean The Population Variance and Standard Deviation The Empirical Rule Chebyshev’s Theorem 3.5 The Covariance and the Coefficient of Correlation The Covariance The Coefficient of Correlation 3.6 Descriptive Statistics: Pitfalls and Ethical Issues USING STATISTICS: More Descriptive Choices, Revisited SUMMARY REFERENCES KEY EQUATIONS KEY TERMS CHECKING YOUR UNDERSTANDING CHAPTER REVIEW PROBLEMS CASES FOR CHAPTER 3 Managing Ashland MultiComm Services Digital Case CardioGood Fitness More Descriptive Choices Follow-up Clear Mountain State Student Survey Chapter 3 EXCEL GUIDE EG3.1 Measures of Central Tendency EG3.2 Measures of Variation and Shape EG3.3 Exploring Numerical Variables EG3.4 Numerical Descriptive Measures for a Population EG3.5 The Covariance and the Coefficient of Correlation Chapter 3 JMP GUIDE JG3.1 Measures of Central Tendency JG3.2 Measures of Variation and Shape JG3.3 Exploring Numerical Variables JG3.4 Numerical Descriptive Measures for a Population JG3.5 The Covariance and the Coefficient of Correlation Chapter 3 MINITAB GUIDE MG3.1 Measures of Central Tendency MG3.2 Measures of Variation and Shape MG3.3 Exploring Numerical Variables MG3.4 Numerical Descriptive Measures for a Population MG3.5 The Covariance and the Coefficient of Correlation Chapter 3 TABLEAU GUIDE TG3.3 Exploring Numerical Variables 4 Basic Probability USING STATISTICS: Possibilities at M&R Electronics World 4.1 Basic Probability Concepts Events and Sample Spaces Types of Probability Summarizing Sample Spaces Simple Probability Joint Probability Marginal Probability General Addition Rule 4.2 Conditional Probability Calculating Conditional Probabilities Decision Trees Independence Multiplication Rules Marginal Probability Using the General Multiplication Rule 4.3 Ethical Issues and Probability 4.4 Bayes’ Theorem CONSIDER THIS: Divine Providence and Spam 4.5 Counting Rules USING STATISTICS: Possibilities at M&R Electronics World, Revisited SUMMARY REFERENCES KEY EQUATIONS KEY TERMS CHECKING YOUR UNDERSTANDING CHAPTER REVIEW PROBLEMS CASES FOR CHAPTER 4 Digital Case CardioGood Fitness The Choice Is Yours Follow-Up Clear Mountain State Student Survey Chapter 4 EXCEL GUIDE EG4.1 Basic Probability Concepts EG4.4 Bayes’ Theorem EG4.5 Counting Rules Chapter 4 JMP GUIDE JG4.4 Bayes’ Theorem Chapter 4 MINITAB GUIDE MG4.5 Counting Rules 5 Discrete Probability Distributions USING STATISTICS: Events of Interest at Ricknel Home Centers 5.1 The Probability Distribution for a Discrete Variable Expected Value of a Discrete Variable Variance and Standard Deviation of a Discrete Variable 5.2 Binomial Distribution Histograms for Discrete Variables Summary Measures for the Binomial Distribution 5.3 Poisson Distribution USING STATISTICS: Events of Interest, Revisited SUMMARY REFERENCES KEY EQUATIONS KEY TERMS CHECKING YOUR UNDERSTANDING CHAPTER REVIEW PROBLEMS CASES FOR CHAPTER 5 Managing Ashland MultiComm Services Digital Case Chapter 5 EXCEL GUIDE EG5.1 The Probability Distribution for a Discrete Variable EG5.2 Binomial Distribution EG5.3 Poisson Distribution Chapter 5 JMP GUIDE JG5.1 The Probability Distribution for a Discrete Variable JG5.2 Binomial Distribution JG5.3 Poisson Distribution Chapter 5 MINITAB GUIDE MG5.1 The Probability Distribution for a Discrete Variable MG5.2 Binomial Distribution MG5.3 Poisson Distribution 6 The Normal Distribution USING STATISTICS: Normal Load Times at MyTVLab 6.1 Continuous Probability Distributions 6.2 The Normal Distribution Role of the Mean and the Standard Deviation Calculating Normal Probabilities Finding X Values CONSIDER THIS: What Is Normal? 6.3 Evaluating Normality Comparing Data Characteristics to Theoretical Properties Constructing the Normal Probability Plot USING STATISTICS: Normal Load Times, Revisited SUMMARY REFERENCES KEY EQUATIONS KEY TERMS CHECKING YOUR UNDERSTANDING CHAPTER REVIEW PROBLEMS CASES FOR CHAPTER 6 Managing Ashland MultiComm Services CardioGood Fitness More Descriptive Choices Follow-up Clear Mountain State Student Survey Digital Case Chapter 6 EXCEL GUIDE EG6.2 The Normal Distribution EG6.3 Evaluating Normality Chapter 6 JMP GUIDE JG6.2 The Normal Distribution JG6.3 Evaluating Normality Chapter 6 MINITAB GUIDE MG6.2 The Normal Distribution MG6.3 Evaluating Normality 7 Sampling Distributions USING STATISTICS: Sampling Oxford Cereals 7.1 Sampling Distributions 7.2 Sampling Distribution of the Mean The Unbiased Property of the Sample Mean Standard Error of the Mean Sampling from Normally Distributed Populations Sampling from Non-normally Distributed Populations—The Central Limit Theorem VISUAL EXPLORATIONS: Exploring Sampling Distributions 7.3 Sampling Distribution of the Proportion USING STATISTICS: Sampling Oxford Cereals, Revisited SUMMARY REFERENCES KEY EQUATIONS KEY TERMS CHECKING YOUR UNDERSTANDING CHAPTER REVIEW PROBLEMS CASES FOR CHAPTER 7 Managing Ashland MultiComm Services Digital Case Chapter 7 EXCEL GUIDE EG7.2 Sampling Distribution of the Mean Chapter 7 JMP GUIDE JG7.2 Sampling Distribution of the Mean Chapter 7 MINITAB GUIDE MG7.2 Sampling Distribution of the Mean 8 Confidence Interval Estimation USING STATISTICS: Getting Estimates at Ricknel Home Centers 8.1 Confidence Interval Estimate for the Mean (σ Known) Sampling Error Can You Ever Know the Population Standard Deviation? 8.2 Confidence Interval Estimate for the Mean (σ Unknown) Student’s t Distribution The Concept of Degrees of Freedom Properties of the t Distribution The Confidence Interval Statement 8.3 Confidence Interval Estimate for the Proportion 8.4 Determining Sample Size Sample Size Determination for the Mean Sample Size Determination for the Proportion 8.5 Confidence Interval Estimation and Ethical Issues USING STATISTICS: Getting Estimates at Ricknel Home Centers, Revisited SUMMARY REFERENCES KEY EQUATIONS KEY TERMS CHECKING YOUR UNDERSTANDING CHAPTER REVIEW PROBLEMS CASES FOR CHAPTER 8 Managing Ashland MultiComm Services Digital Case Sure Value Convenience Stores CardioGood Fitness More Descriptive Choices Follow-Up Clear Mountain State Student Survey Chapter 8 EXCEL GUIDE EG8.1 Confidence Interval Estimate for the Mean (σ Known) EG8.2 Confidence Interval Estimate for the Mean (σ Unknown) EG8.3 Confidence Interval Estimate for the Proportion EG8.4 Determining Sample Size Chapter 8 JMP GUIDE JG8.1 Confidence Interval Estimate for the Mean ( σ Known) JG8.2 Confidence Interval Estimate for the Mean ( σ Unknown) JG8.3 Confidence Interval Estimate for the Proportion JG8.4 Determining Sample Size Chapter 8 MINITAB GUIDE MG8.1 Confidence Interval Estimate for the Mean (σ Known) MG8.2 Confidence Interval Estimate for the Mean (σ Unknown) MG8.3 Confidence Interval Estimate for the Proportion MG8.4 Determining Sample Size 9 Fundamentals of Hypothesis Testing: One-Sample Tests USING STATISTICS: Significant Testing at Oxford Cereals 9.1 Fundamentals of Hypothesis Testing The Critical Value of the Test Statistic Regions of Rejection and Nonrejection Risks in Decision Making Using Hypothesis Testing Z Test for the Mean (σ Known) Hypothesis Testing Using the Critical Value Approach Hypothesis Testing Using the p-Value Approach A Connection Between Confidence Interval Estimation and Hypothesis Testing Can You Ever Know the Population Standard Deviation? 9.2 t Test of Hypothesis for the Mean (σ Unknown) Using the Critical Value Approach Using the p-Value Approach Checking the Normality Assumption 9.3 One-Tail Tests Using the Critical Value Approach Using the p-Value Approach 9.4 Z Test of Hypothesis for the Proportion Using the Critical Value Approach Using the p-Value Approach 9.5 Potential Hypothesis-Testing Pitfalls and Ethical Issues Important Planning Stage Questions Statistical Significance Versus Practical Significance Statistical Insignificance Versus Importance Reporting of Findings Ethical Issues USING STATISTICS: Significant Testing..., Revisited SUMMARY REFERENCES KEY EQUATIONS KEY TERMS CHECKING YOUR UNDERSTANDING CHAPTER REVIEW PROBLEMS CASES FOR CHAPTER 9 Managing Ashland MultiComm Services Digital Case Sure Value Convenience Stores Chapter 9 EXCEL GUIDE EG9.1 Fundamentals of Hypothesis Testing EG9.2 t Test of Hypothesis for the Mean (σ Unknown) EG9.3 One-Tail Tests EG9.4 Z Test of Hypothesis for the Proportion Chapter 9 JMP GUIDE JG9.1 Fundamentals of Hypothesis Testing JG9.2 t Test of Hypothesis for the Mean (σ Unknown) JG9.3 One-Tail Tests JG9.4 Z Test of Hypothesis for the Proportion Chapter 9 MINITAB GUIDE MG9.1 Fundamentals of Hypothesis Testing MG9.2 t Test of Hypothesis for the Mean (σ Unknown) MG9.3 One-Tail Tests MG9.4 Z Test of Hypothesis for the Proportion 10 Two-Sample Tests and One-Way ANOVA USING STATISTICS I: Differing Means for Selling Streaming Media Players at Arlingtons? 10.1 Comparing the Means of Two Independent Populations Pooled-Variance t Test for the Difference Between Two Means Assuming Equal Variances Evaluating the Normality Assumption Confidence Interval Estimate for the Difference Between Two Means Separate-Variance t Test for the Difference Between Two Means, Assuming Unequal Variances CONSIDER THIS: Do People Really Do This? 10.2 Comparing the Means of Two Related Populations Paired t Test Confidence Interval Estimate for the Mean Difference 10.3 Comparing the Proportions of Two Independent Populations Z Test for the Difference Between Two Proportions Confidence Interval Estimate for the Difference Between Two Proportions 10.4 F Test for the Ratio of Two Variances USING STATISTICS II: The Means to Find Differences at Arlingtons 10.5 One-Way ANOVA Analyzing Variation in One-Way ANOVA F Test for Differences Among More Than Two Means One-Way ANOVA F Test Assumptions Levene Test for Homogeneity of Variance Multiple Comparisons: The Tukey-Kramer Procedure USING STATISTICS I: Differing Means for Selling, Revisited USING STATISTICS II: The Means to Find Differences at Arlingtons, Revisited SUMMARY REFERENCES KEY EQUATIONS KEY TERMS CHECKING YOUR UNDERSTANDING CHAPTER REVIEW PROBLEMS CASES FOR CHAPTER 10 Managing Ashland MultiComm Services Digital Case Sure Value Convenience Stores CardioGood Fitness More Descriptive Choices Follow-Up Clear Mountain State Student Survey Chapter 10 EXCEL GUIDE EG10.1 Comparing the Means of Two Independent Populations EG10.2 Comparing the Means of Two Related Populations EG10.3 Comparing the Proportions of Two Independent Populations EG10.4 F Test for the Ratio of Two Variances EG10.5 One-Way Anova Chapter 10 JMP GUIDE JG10.1 Comparing the Means of Two Independent Populations JG10.2 Comparing the Means of Two Related Populations JG10.3 Comparing the Proportions of Two Independent Populations JG10.4 F Test for the Ratio of Two Variances JG10.5 One-Way Anova Chapter 10 MINITAB GUIDE MG10.1 Comparing the Means of Two Independent Populations MG10.2 Comparing the Means of Two Related Populations MG10.3 Comparing the Proportions of Two Independent Populations MG10.4 F Test for the Ratio of Two Variances MG10.5 One-Way Anova 11 Chi-Square Tests USING STATISTICS: Avoiding Guesswork About Resort Guests 11.1 Chi-Square Test for the Difference Between Two Proportions 11.2 Chi-Square Test for Differences Among More Than Two Proportions 11.3 Chi-Square Test of Independence USING STATISTICS: Avoiding Guesswork, Revisited SUMMARY REFERENCES KEY EQUATIONS KEY TERMS CHECKING YOUR UNDERSTANDING CHAPTER REVIEW PROBLEMS CASES FOR CHAPTER 11 Managing Ashland MultiComm Services PHASE 1 PHASE 2 Digital Case CardioGood Fitness Clear Mountain State Student Survey Chapter 11 EXCEL GUIDE EG11.1 Chi-Square Test for the Difference Between Two Proportions EG11.2 Chi-Square Test for Differences Among More Than Two Proportions EG11.3 Chi-Square Test of Independence Chapter 11 JMP GUIDE JG11.1 Chi-Square Test for the Difference Between Two Proportions JG11.2 Chi-Square Test for Difference Among More Than Two Proportions JG11.3 Chi-Square Test of Independence Chapter 11 MINITAB GUIDE MG11.1 Chi-Square Test for the Difference Between Two Proportions MG11.2 Chi-Square Test for Differences Among More Than Two Proportions MG11.3 Chi-Square Test of Independence 12 Simple Linear Regression USING STATISTICS: Knowing Customers at Sunflowers Apparel Preliminary Analysis 12.1 Simple Linear Regression Models 12.2 Determining the Simple Linear Regression Equation The Least-Squares Method Predictions in Regression Analysis: Interpolation Versus Extrapolation Calculating the Slope, b1, and the Y Intercept, b0 12.3 Measures of Variation Computing the Sum of Squares The Coefficient of Determination Standard Error of the Estimate 12.4 Assumptions of Regression 12.5 Residual Analysis Evaluating the Assumptions 12.6 Measuring Autocorrelation: The Durbin-Watson Statistic Residual Plots to Detect Autocorrelation The Durbin-Watson Statistic 12.7 Inferences About the Slope and Correlation Coefficient t Test for the Slope F Test for the Slope Confidence Interval Estimate for the Slope t Test for the Correlation Coefficient 12.8 Estimation of Mean Values and Prediction of Individual Values The Confidence Interval Estimate for the Mean Response The Prediction Interval for an Individual Response 12.9 Potential Pitfalls in Regression USING STATISTICS: Knowing Customers, Revisited SUMMARY REFERENCES KEY EQUATIONS KEY TERMS CHECKING YOUR UNDERSTANDING CHAPTER REVIEW PROBLEMS CASES FOR CHAPTER 12 Managing Ashland MultiComm Services Digital Case Brynne Packaging Chapter 12 EXCEL GUIDE EG12.2 Determining the Simple Linear Regression Equation EG12.3 Measures of Variation EG12.5 Residual Analysis EG12.6 Measuring Autocorrelation: the Durbin‐Watson Statistic EG12.7 Inferences About the Slope and Correlation Coefficient EG12.8 Estimation of Mean Values and Prediction of Individual Values Chapter 12 JMP GUIDE JG12.2 Determining the Simple Linear Regression Equation JG12.3 Measures of Variation JG12.5 Residual Analysis JG12.6 Measuring Autocorrelation: the Durbin‐Watson Statistic JG12.7 Inferences About the Slope and Correlation Coefficient JG12.8 Estimation of Mean Values and Prediction of Individual Values Chapter 12 MINITAB GUIDE MG12.2 Determining the Simple Linear Regression Equation MG12.3 Measures of Variation MG12.5 Residual Analysis MG12.6 Measuring Autocorrelation: The Durbin‐Watson Statistic MG12.7 Inferences About the Slope and Correlation Coefficient MG12.8 Estimation of Mean Values and Prediction of Individual Values Chapter 12 TABLEAU GUIDE TG12.2 Determining the Simple Linear Regression Equation TG12.3 Measures of Variation 13 Multiple Regression USING STATISTICS: The Multiple Effects of OmniPower Bars 13.1 Developing a Multiple Regression Model Interpreting the Regression Coefficients Predicting the Dependent Variable Y 13.2 Evaluating Multiple Regression Models Coefficient of Multiple Determination, r² Adjusted r² F Test for the Significance of the Overall Multiple Regression Model 13.3 Multiple Regression Residual Analysis 13.4 Inferences About the Population Regression Coefficients Tests of Hypothesis Confidence Interval Estimation 13.5 Using Dummy Variables and Interaction Terms Interactions USING STATISTICS: The Multiple Effects, Revisited SUMMARY REFERENCES KEY EQUATIONS KEY TERMS CHECKING YOUR UNDERSTANDING CHAPTER REVIEW PROBLEMS CASES FOR CHAPTER 13 Managing Ashland MultiComm Services Digital Case CHAPTER 13 EXCEL GUIDE EG13.1 Developing a Multiple Regression Model EG13.2 Evaluating Multiple Regression Models EG13.3 Multiple Regression ‐Residual Analysis EG13.4 Inferences About the Population Regression Coefficients EG13.5 Using Dummy Variables and Interaction Terms CHAPTER 13 JMP GUIDE JG13.1 Developing a Multiple Regression Model JG13.2 Evaluating Multiple Regression Models JG13.3 Multiple Regression Residual Analysis JG13.4 Inferences About the Population JG13.5 Using Dummy Variables And Interaction Terms CHAPTER 13 MINITAB GUIDE MG13.1 Developing a Multiple Regression Model MG13.2 Evaluating Multiple Regression Models MG13.3 Multiple Regression ‐Residual Analysis MG13.4 Inferences About the Population Regression Coefficients MG13.5 Using Dummy Variables and Interaction Terms In Regression Models 14 Business Analytics USING STATISTICS: Back to Arlingtons for the Future 14.1 Business Analytics Categories Inferential Statistics and Predictive Analytics Supervised and Unsupervised Methods CONSIDER THIS: What’s My Major If I Want to Be a Data Miner? 14.2 Descriptive Analytics Dashboards Data Dimensionality and Descriptive Analytics 14.3 Predictive Analytics for Prediction 14.4 Predictive Analytics for Classification 14.5 Predictive Analytics for Clustering 14.6 Predictive Analytics for Association Multidimensional Scaling (MDS) 14.7 Text Analytics 14.8 Prescriptive Analytics USING STATISTICS: Back to Arlingtons... , Revisited REFERENCES KEY EQUATIONS KEY TERMS CHECKING YOUR UNDERSTANDING CHAPTER REVIEW PROBLEMS CHAPTER 14 SOFTWARE GUIDE Introduction SG14.2 Descriptive Analytics SG14.3 Predictive Analytics for Prediction SG14.4 Predictive Analytics for Classification SG14.5 Predictive Analytics for Clustering SG14.6 Predictive Analytics for Association Appendices A. Basic Math Concepts and Symbols A.1 Operators A.2 Rules for Arithmetic Operations A.3 Rules for Algebra: Exponents and Square Roots A.4 Rules for Logarithms A.5 Summation Notation A.6 Greek Alphabet B. IMPORTANT SOFTWARE SKILLS AND CONCEPTS B.1 Identifying the Software Version B.2 Formulas B.3 Excel Cell References B.4 Excel Worksheet Formatting B.5E Excel Chart Formatting B.5J JMP Chart Formatting B.5M Minitab Chart Formatting B.5T Tableau Chart Formatting B.6 Creating Histograms for Discrete Probability Distributions (Excel) B.7 Deleting the “Extra” Histogram Bar (Excel) C. ONLINE RESOURCES C.1 About the Online Resources for This Book C.2 Data Files C.3 Files Integrated With Microsoft Excel C.4 Supplemental Files D. CONFIGURING SOFTWARE D.1 Microsoft Excel Configuration D.2 JMP Configuration D.3 Minitab Configuration D.4 Tableau Configuration E. TABLE E.1 Table of Random Numbers E.2 The Cumulative Standardized Normal Distribution E.3 Critical Values of t E.4 Critical Values of X2 E.5 Critical Values of F E.6 The Standardized Normal Distribution E.7 Critical Values of the Studentized Range, Q E.8 Critical Values, dL and dU, of the Durbin-Watson Statistic, D (Critical Values Are One-Sided) E.9 Control Chart Factors F. USEFUL KNOWLEDGE F.1 Keyboard Shortcuts F.2 Understanding the Nonstatistical Functions G. SOFTWARE FAQS G.1 Microsoft Excel FAQs G.2 PHStat FAQs G.3 JMP FAQs G.4 Minitab FAQs G.5 Tableau FAQs H. ALL ABOUT PHStat H.1 What is PHStat? H.2 Obtaining and Setting Up PHStat H.3 Using PHStat H.4 PHStat Procedures, by Category Self-Test Solutions and Answers to Selected Even-Numbered Problems Index A B C D E F G H I J K L M N O P Q R S T U V W Y Z Credits