دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 10
نویسندگان: David F. Groebner
سری:
ISBN (شابک) : 0134496493, 9780134496498
ناشر: Pearson
سال نشر: 2017
تعداد صفحات: 871
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 47 مگابایت
در صورت تبدیل فایل کتاب Business Statistics: A Decision-Making Approach به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب آمار تجارت: رویکردی تصمیم گیری نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این متن عمدتاً به سمت رشتههای کالج/دانشگاه بازرگانی در مقطع
کارشناسی هدایت میشود، این متن همچنین محتوای عملی را برای
متخصصان فعلی و مشتاق صنعت ارائه میکند. \"
آمار کسب و کار\" به خوانندگان نشان می دهد که چگونه مهارت های
تجزیه و تحلیل آماری را برای مسائل تصمیم گیری در دنیای واقعی به
کار گیرند. از یک رویکرد مستقیم استفاده میکند که به طور مداوم
مفاهیم و تکنیکها را به گونهای ارائه میکند که به خوانندگان با
تمام پیشینههای ریاضی سود میرساند. این متن همچنین شامل
مثالهای تجاری جذاب برای نشان دادن ارتباط آمارهای تجاری در عمل
است. برای سفارش \ "آمار تجاری \" با MyStatlab ، لطفاً از ISBN
استفاده کنید: 0133098788 /9780133098785 \ "آمار تجاری \" به
علاوه Mystatlab با پیرسون etext - بسته بسته کارت دسترسی شامل
013302184x / 978013302133021844 4444444444444444 با Pearson
eText -- کارت دسترسی مستقل -- برای \" \"آمار کسب و کار\" \" \"
Directed primarily toward undergraduate business
college/university majors, this text also provides practical
content to current and aspiring industry professionals. "
Business Statistics" shows readers how to apply statistical
analysis skills to real-world, decision-making problems. It
uses a direct approach that consistently presents concepts and
techniques in way that benefits readers of all mathematical
backgrounds. This text also contains engaging business examples
to show the relevance of business statistics in action. To
order "Business Statistics" with MyStatLab, please use ISBN:
0133098788 / 9780133098785 "Business Statistics "Plus MyStatLab
with Pearson eText -- Access Card Package Package consists of
013302184X / 9780133021844 "Business Statistics " 0133029824 /
9780133029826 MyStatLab with Pearson eText -- Standalone Access
Card -- for " "Business Statistics" " "
Cover Title Page Copyright Page Dedication About the Authors Brief Contents Contents Preface 1. The Where, Why, and How of Data Collection 1.1. What Is Business Statistics? Descriptive Statistics Inferential Procedures 1.2. Procedures for Collecting Data Primary Data Collection Methods Other Data Collection Methods Data Collection Issues 1.3. Populations, Samples, and Sampling Techniques Populations and Samples Sampling Techniques 1.4. Data Types and Data Measurement Levels Quantitative and Qualitative Time-Series Data and Cross-Sectional Data Data Measurement Levels 1.5. A Brief Introduction to Data Mining Data Mining—Finding the Important, Hidden Relationships in Data 1 Overview Summary Key Terms Chapter Exercises 2. Graphs, Charts, and Tables—Describing Your Data 2.1. Frequency Distributions and Histograms Frequency Distributions Grouped Data Frequency Distributions Histograms Relative Frequency Histograms and Ogives Joint Frequency Distributions 2.2. Bar Charts, Pie Charts, and Stem and Leaf Diagrams Bar Charts Pie Charts Stem and Leaf Diagrams 2.3. Line Charts, Scatter Diagrams, and Pareto Charts Line Charts Scatter Diagrams Pareto Charts 2. Overview Summary Equations Key Terms Chapter Exercises Case 2.1: Server Downtime Case 2.2: Hudson Valley Apples, Inc. Case 2.3: Pine River Lumber Company—Part 1 3. Describing Data Using Numerical Measures 3.1. Measures of Center and Location Parameters and Statistics Population Mean Sample Mean The Impact of Extreme Values on the Mean Median Skewed and Symmetric Distributions Mode Applying the Measures of Central Tendency Other Measures of Location Box and Whisker Plots Developing a Box and Whisker Plot in Excel 2016 Data-Level Issues 3.2. Measures of Variation Range Interquartile Range Population Variance and Standard Deviation Sample Variance and Standard Deviation 3.3. Using the Mean and Standard Deviation Together Coefficient of Variation Tchebysheff’s Theorem Standardized Data Values 3. Overview Summary Equations Key Terms Chapter Exercises Case 3.1: SDW—Human Resources Case 3.2: National Call Center Case 3.3: Pine River Lumber Company—Part 2 Case 3.4: AJ’s Fitness Center 1-3. Special Review Section Chapters 1–3 Exercises Review Case 1. State Department of Insurance Term Project Assignments 4. Introduction to Probability 4.1. The Basics of Probability Important Probability Terms Methods of Assigning Probability 4.2. The Rules of Probability Measuring Probabilities Conditional Probability Multiplication Rule Bayes’ Theorem 4. Overview Summary Equations Key Terms Chapter Exercises Case 4.1: Great Air Commuter Service Case 4.2: Pittsburg Lighting 5. Discrete Probability Distributions 5.1. Introduction to Discrete Probability Distributions Random Variables Mean and Standard Deviation of Discrete Distributions 5.2. The Binomial Probability Distribution The Binomial Distribution Characteristics of the Binomial Distribution 5.3. Other Probability Distributions The Poisson Distribution The Hypergeometric Distribution 5. Overview Summary Equations Key Terms Chapter Exercises Case 5.1: SaveMor Pharmacies Case 5.2: Arrowmark Vending Case 5.3: Boise Cascade Corporation 6. Introduction to Continuous Probability Distributions 6.1. The Normal Distribution The Normal Distribution The Standard Normal Distribution Using the Standard Normal Table 6.2. Other Continuous Probability Distributions The Uniform Distribution The Exponential Distribution 6. Overview Summary Equations Key Terms Chapter Exercises Case 6.1: State Entitlement Programs Case 6.2: Credit Data, Inc. Case 6.3: National Oil Company—Part 1 7. Introduction to Sampling Distributions 7.1. Sampling Error: What It Is and Why It Happens Calculating Sampling Error 7.2. Sampling Distribution of the Mean Simulating the Sampling Distribution for x̄ The Central Limit Theorem 7.3. Sampling Distribution of a Proportion Working with Proportions Sampling Distribution of p̄ 7. Overview Summary Equations Key Terms Chapter Exercises Case 7.1: Carpita Bottling Company—Part 1 Case 7.2: Truck Safety Inspection 8. Estimating Single Population Parameters 8.1. Point and Confidence Interval Estimates for a Population Mean Point Estimates and Confidence Intervals Confidence Interval Estimate for the Population Mean, σ Known Confidence Interval Estimates for the Population Mean, σ Unknown Student’s t-Distribution 8.2. Determining the Required Sample Size for Estimating a Population Mean Determining the Required Sample Size for Estimating μ, σ Known Determining the Required Sample Size for Estimating μ, σ Unknown 8.3. Estimating a Population Proportion Confidence Interval Estimate for a Population Proportion Determining the Required Sample Size for Estimating a Population Proportion 8. Overview Summary Equations Key Terms Chapter Exercises Case 8.1: Management Solutions, Inc. Case 8.2: Federal Aviation Administration Case 8.3: Cell Phone Use 9. Introduction to Hypothesis Testing 9.1. Hypothesis Tests for Means Formulating the Hypotheses Significance Level and Critical Value Hypothesis Test for μ, σ Known Types of Hypothesis Tests p-Value for Two-Tailed Tests Hypothesis Test for μ, σ Unknown 9.2. Hypothesis Tests for a Proportion Testing a Hypothesis about a Single Population Proportion 9.3. Type II Errors Calculating Beta Controlling Alpha and Beta Power of the Test 9. Overview Summary Equations Key Terms Chapter Exercises Case 9.1: Carpita Bottling Company—Part 2 Case 9.2: Wings of Fire 10. Estimation and Hypothesis Testing for Two Population Parameters 10.1. Estimation for Two Population Means Using Independent Samples Estimating the Difference between Two Population Means When σ1 and σ2 Are Known, Using Independent Samples Estimating the Difference between Two Population Means When σ1 and σ2 Are Unknown, Using Independent Samples 10.2. Hypothesis Tests for Two Population Means Using Independent Samples Testing for μ1 - μ2 When σ1 and σ2 Are Known, Using Independent Samples Testing for μ1 - μ2 When σ1 and σ2 Are Unknown,Using Independent Samples 10.3. Interval Estimation and Hypothesis Tests for Paired Samples Why Use Paired Samples? Hypothesis Testing for Paired Samples 10.4. Estimation and Hypothesis Tests for Two Population Proportions Estimating the Difference between Two Population Proportions Hypothesis Tests for the Difference between Two Population Proportions 10. Overview Summary Equations Key Terms Chapter Exercises Case 10.1: Larabee Engineering—Part 1 Case 10.2: Hamilton Marketing Services Case 10.3: Green Valley Assembly Company Case 10.4: U-Need-It Rental Agency 11. Hypothesis Tests and Estimation for Population Variances 11.1. Hypothesis Tests and Estimation for a Single Population Variance Chi-Square Test for One Population Variance Interval Estimation for a Population Variance 11.2. Hypothesis Tests for Two Population Variances F-Test for Two Population Variances 11. Overview Summary Equations Key Term Chapter Exercises Case 11.1: Larabee Engineering—Part 2 12. Analysis of Variance 12.1. One-Way Analysis of Variance Introduction to One-Way ANOVA Partitioning the Sum of Squares The ANOVA Assumptions Applying One-Way ANOVA The Tukey-Kramer Procedure for Multiple Comparisons Fixed Effects Versus Random Effects in Analysis of Variance 12.2 Randomized Complete Block Analysis of Variance Randomized Complete Block ANOVA Fisher’s Least Significant Difference Test 12.3. Two-Factor Analysis of Variance with Replication Two-Factor ANOVA with Replications A Caution about Interaction 12. Overview Summary Equations Key Terms Chapter Exercises Case 12.1: Agency for New Americans Case 12.2: McLaughlin Salmon Works Case 12.3: NW Pulp and Paper Case 12.4: Quinn Restoration Business Statistics Capstone Project: Theme: Analysis of Variance 8–12. Special Review Section Chapters 8–12 Using the Flow Diagrams Exercises 13. Goodness-of-Fit Tests and Contingency Analysis 13.1. Introduction to Goodness-of-Fit Tests Chi-Square Goodness-of-Fit Test 13.2. Introduction to Contingency Analysis 2 × 2 Contingency Tables r × c Contingency Tables Chi-Square Test Limitations 13. Overview Summary Equations Key Term Chapter Exercises Case 13.1: National Oil Company—Part 2 Case 13.2: Bentford Electronics—Part 1 14. Introduction to Linear Regression and Correlation Analysis 14.1. Scatter Plots and Correlation The Correlation Coefficient 14.2. Simple Linear Regression Analysis The Regression Model Assumptions Meaning of the Regression Coefficients Least Squares Regression Properties Significance Tests in Regression Analysis 14.3. Uses for Regression Analysis Regression Analysis for Description Regression Analysis for Prediction Common Problems Using Regression Analysis 14. Overview Summary Equations Key Terms Chapter Exercises Case 14.1: A & A Industrial Products Case 14.2: Sapphire Coffee—Part 1 Case 14.3: Alamar Industries Case 14.4: Continental Trucking 15. Multiple Regression Analysis and Model Building 15.1. Introduction to Multiple Regression Analysis Basic Model-Building Concepts 15.2. Using Qualitative Independent Variables 15.3. Working with Nonlinear Relationships Analyzing Interaction Effects Partial F-Test 15.4. Stepwise Regression Forward Selection Backward Elimination Standard Stepwise Regression Best Subsets Regression 15.5. Determining the Aptness of the Model Analysis of Residuals Corrective Actions 15. Overview Summary Equations Key Terms Chapter Exercises Case 15.1: Dynamic Weighing, Inc. Case 15.2: Glaser Machine Works Case 15.3: Hawlins Manufacturing Case 15.4: Sapphire Coffee—Part 2 Case 15.5: Wendell Motors 16. Analyzing and Forecasting Time-Series Data 16.1. Introduction to Forecasting and Time-Series Data General Forecasting Issues Components of a Time Series Introduction to Index Numbers Using Index Numbers to Deflate a Time Series 16.2. Trend-Based Forecasting Techniques Developing a Trend-Based Forecasting Model Comparing the Forecast Values to the Actual Data Nonlinear Trend Forecasting Adjusting for Seasonality 16.3. Forecasting Using Smoothing Methods Exponential Smoothing Forecasting with Excel 2016 16. Overview Summary Equations Key Terms Chapter Exercises Case 16.1: Park Falls Chamber of Commerce Case 16.2: The St. Louis Companies Case 16.3: Wagner Machine Works 17. Introduction to Nonparametric Statistics 17.1. The Wilcoxon Signed Rank Test for One Population Median The Wilcoxon Signed Rank Test—Single Population 17.2. Nonparametric Tests for Two Population Medians The Mann–Whitney U-Test Mann–Whitney U-Test—Large Samples 17.3. Kruskal–Wallis One-Way Analysis of Variance Limitations and Other Considerations 17. Overview Summary Equations Chapter Exercises Case 17.1: Bentford Electronics—Part 2 18. Introducing Business Analytics 18.1. What Is Business Analytics? Descriptive Analytics Predictive Analytics 18.2. Data Visualization Using Microsoft Power BI Desktop Using Microsoft Power BI Desktop 18. Overview Summary Key Terms Case 18.1: New York City Taxi Trips Appendix Tables Appendix A: Random Numbers Table Appendix B: Cumulative Binomial Distribution Table Appendix C: Cumulative Poisson Probability Distribution Table Appendix D: Standard Normal Distribution Table Appendix E: Exponential Distribution Table Appendix F: Values of t for Selected Probabilities Appendix G: Values of χ2 for Selected Probabilities Appendix H: F-Distribution Table: Upper 5% Probability (or 5% Area) under F-Distribution Curve Appendix I: Distribution of the Studentized Range (q-values) Appendix J: Critical Values of r in the Runs Test Appendix K: Mann-Whitney U Test Probabilities (n < 9) Appendix L: Mann-Whitney U Test Critical Values (9 ≤ n ≤ 20) Appendix M: Critical Values of T in the Wilcoxon Matched-Pairs Signed-Ranks Test (n ≤ 25) Appendix N: Critical Values dL and dU of the Durbin-Watson Statistic D (Critical Values Are One-Sided) Appendix O: Lower and Upper Critical Values W of Wilcoxon Signed-Ranks Test Appendix P: Control Chart Factors Answers to Selected Odd-Numbered Exercises References Glossary Index Credits Back Cover