دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: نویسندگان: N Das, Dr. J K Das سری: ISBN (شابک) : 9780071333399, 0071333398 ناشر: MC GRAW HILL INDIA سال نشر: 2012 تعداد صفحات: 747 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 39 مگابایت
در صورت تبدیل فایل کتاب Business Mathematics and Statistics به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب ریاضیات و آمار کسب و کار نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Cover Contents 1. Introduction: Scope, Data Collection and Classification 1.1 Meaning of ‘Statistics’ 1.2 Variable and Attribute 1.3 Primary Data and Secondary Data 1.4 Population (or Universe) and Sample 1.5 Complete Enumeration (or Census) and Sample Survey 1.6 Statistical Enquiry 1.7 Useful Terms 1.8 Classification 1.9 Tabulation 1.10 Mechanical Tabulation 1.11 Additional Example Exercises Answers 2. Permutation 2.1 Introduction 2.2 Fundamental Rules of Counting 2.3 Results on Permutation 2.4 Additional Examples Exercises Answers 3. Combination 3.1 Introduction 3.2 Results of Combination 3.3 Additional Examples Exercises Answers 4. Set Theory 4.1 Set 4.2 Methods of Set Representation and Notation 4.3 Types of Sets 4.4 Venn Diagram 4.5 Set Operations 4.6 Union (Set Addition) 4.7 Intersection (Set Multiplication) 4.8 Complement 4.9 Difference 4.10 Examples on Set Operations 4.11 Laws of Algebra of Sets 4.12 Duality 4.13 Verification of Laws (Using Venn Diagram) 4.14 Proof of the Laws of Set Algebra 4.15 Number of Elements in a Set 4.16 Additional Examples Exercises Answers 5. Logarithm 5.1 Introduction 5.2 Definition of Logarithm 5.3 Laws of Logarithm 5.4 Additional Examples 5.5 Common Logarithm and Natural Logarithm 5.6 Antilogarithm Exercises Answers 6. Binomial Theorem 6.1 Introduction 6.2 Binomial Theorem 6.3 General Term of (a + x)n 6.4 Middle Term(s) of (a + x)n 6.5 Equidistant Terms and Coefficients 6.6 Greatest Binomial Coefficient(s) 6.7 Properties of Binomial Coefficient(s) 6.8 Additional Examples Exercises Answers 7. Compound Interest 7.1 Introduction 7.2 Definition of Important Terms 7.3 Simple Interest 7.4 Compound Interest 7.5 Interest Compounded Continuously 7.6 Amount at the Changing Rates of Interest 7.7 Nominal and Effective Rate of Interest 7.8 Growth and Depreciation 7.9 Additional Examples Exercises Answers 8. Annuities 8.1 Introduction 8.2 Amount of Immediate Annuity or Ordinary Annuity 8.3 Present Value of Immediate Annuity or Ordinary Annuity 8.4 Amount of Annuity Due 8.5 Present Value of Annuity Due 8.6 Amount of a Deferred Annuity 8.7 Present Value of a Deferred Annuity 8.8 Perpetual Annuity or Perpetuity 8.9 Amortisation 8.10 Sinking Fund 8.11 Additional Examples Exercises Answers 9. Other Useful Mathematical Devices 9.1 Rounding of Numbers 9.2 Absolute, Relative and Percentage Errors 9.3 Significant Figures 9.4 Some Short Processes of Calculation 9.5 Roots and Reciprocals Expressed as Power 9.6 A.P. Series and G.P. Series 9.7 Sum and Sum of the Squares of Numbers 9.8 Inequalities 9.9 Concept of ‘Function’ 9.10 Polynomial 9.11 Sigma (S) Notation 9.12 Simple Interpolation 10. Charts and Diagrams 10.1 Objects of Diagrammatic Representation 10.2 Types of Charts and Diagrams 10.3 Additional Examples Exercises Answers 11. Frequency Distribution 11.1 Observation, Frequency 11.2 Simple Series (or Ungrouped Data) and Frequency Distribution 11.3 Useful Terms Associated with Grouped Frequency Distributions 11.4 Construction of Frequency Distribution 11.5 Cumulative Frequency Distribution 11.6 Relative Frequency Distribution 11.7 Diagrammatic Representation of Frequency Distributions 11.8 Frequency Curve 11.9 Additional Examples Exercises Answers 12. Measures of Central Tendency 12.1 Averages or Measures of Central Tendency 12.2 Arithmetic Mean (A.M.) 12.3 Important Properties of A.M. 12.4 Simplified Calculation for A.M. 12.5 Mean of Composite Group 12.6 Geometric Mean (G.M.) 12.7 Properties of G.M. 12.8 Harmonic Mean (H.M.) 12.9 Advantages and Disadvantages of A.M., G.M., H.M. 12.10 Relations between A.M., G.M., H.M. 12.11 Median 12.12 Calculation of Median 12.13 Advantages and Disadvantages of Median 12.14 Mode 12.15 Calculation of Mode 12.16 Advantages and Disadvantages of Mode 12.17 Relation between Mean, Median, Mode 12.18 Partition Values—Quartiles, Deciles, Percentiles 12.19 Calculation of Partition Values 12.20 Additional Examples Exercises Answers 13. Measures of Dispersion 13.1 Meaning and Necessity of ‘Measures of Dispersion’ 13.2 Range 13.3 Quartile Deviation (or Semi-interquartile Range) 13.4 Mean Deviation (or Mean Absolute Deviation) 13.5 Standard Deviation (S.D.) 13.6 Important Properties of S.D. 13.7 Calculation of Standard Deviation (s) 13.8 S.D. of Composite Group 13.9 Relation between S.D. and Other Measures 13.10 Relative Measures of Dispersion 13.11 Additional Examples Exercises Answers 14. Moments, Skewness and Kurtosis 14.1 Moments 14.2 Relation between Central and Non-central Moments 14.3 Beta-coefficients and Gamma-coefficients 14.4 Standardized Variable 14.5 Moments of Frequency Distributions 14.6 Skewness 14.7 Kurtosis 14.8 Additional Examples Exercises Answers 15. Curve Fitting 15.1 Curve Fitting 15.2 Straight Line and Parabola 15.3 Free-hand Method of Curve Fitting 15.4 Method of Least Squares 15.5 Fitting Straight Line 15.6 Simplified Calculations 15.7 Fitting Parabola 15.8 Fitting Exponential and Geometric Curves Exercises Answers 16. Correlation and Regression 16.1 Concepts of ‘Correlation’ and ‘Regression’ 16.2 Bivariate Data 16.3 Bivariate Frequency Distribution 16.4 Scatter Diagram 16.5 Correlation 16.6 Covariance 16.7 Correlation Coefficient (r) 16.8 Properties of Correlation Coefficient 16.9 Calculation of r 16.10 Interpretation and Use of r 16.11 Variance of the Sum (Difference) of Two Series 16.12 Regression 16.13 Properties of Linear Regression 16.14 Explained Variation and Unexplained Variation 16.15 Regression Curve in Bivariate Frequency Distribution 16.16 Rank Correlation 16.17 Additional Examples Exercises Answers 17. Association of Attributes 17.1 Introduction 17.2 Notations and Data Classification 17.3 Contingency Table 17.4 Type of Association 17.5 Measures of Association Exercises Answers 18. Interpolation 18.1 Introduction 18.2 Finite Differences: D and E Operators 18.3 Differences of a Polynomial Function 18.4 Newton’s Forward Interpolation Formula 18.5 Newton’s Backward Interpolation Formula 18.6 Lagrange’s Interpolation Formula 18.7 Inverse Interpolation 18.8 Additional Examples Exercises Answers 19. Index Numbers 19.1 Meaning of ‘Index Number’ 19.2 Problems in Construction of Index Numbers 19.3 Methods of Construction of Index Numbers 19.4 Quantity Index Number 19.5 Tests of Index Numbers 19.6 Chain Base Method 19.7 Cost of Living Index Numbers 19.8 Bias in Laspeyres’ and Paasche’s Formulae for C.L.I. 19.9 Base Shifting, Splicing and Deflation 19.10 Errors in Index Numbers 19.11 Additional Examples Exercises Answers 20. Time Series 20.1 Meaning and Necessity of ‘Time Series Analysis’ 20.2 Components of Time Series 20.3 Adjustments to Time Series Data 20.4 Secular Trend 20.5 Measurement of Trend 20.6 Monthly Trend from Annual Data 20.7 Seasonal Variation 20.8 Measurement of Seasonal Variation 20.9 Cyclical Fluctuation 20.10 Business Forecasting 20.11 Exponential Smoothing 20.12 Additional Examples Exercises Answers 21. Probability Theory 21.1 Introduction 21.2 Random Experiment, Outcome, Event 21.3 Important Terminology 21.4 Techniques of Counting 21.5 Classical (or ‘a Priori’) Definition of Probability 21.6 Theorems of Probability 21.7 Drawing without Replacement 21.8 Repeated Trials—Drawing with Replacement 21.9 Bayes’ Theorem 21.10 Other Approaches to Probability Theory 21.11 Set and Probability 21.12 Axioms of Probability 21.13 Finite Probability Space and Assignment of Probabilities 21.14 Finite Equiprobable Sample Space and Classical Definition 21.15 Conditional Probability 21.16 Independent Events 21.17 Additional Examples Exercises Answers University of Calcutta Question Paper-2011 (with Hints and Answers) Log Tables Index