دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: Paperback نویسندگان: Ramesh Sharda, Dursun Delen, Efraim Turban سری: ISBN (شابک) : 0134633288, 9780134633282 ناشر: Pearson سال نشر: 2017 تعداد صفحات: 515 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 31 مگابایت
در صورت تبدیل فایل کتاب Business Intelligence, Analytics, and Data Science: A Managerial Perspective به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب هوش تجاری ، تجزیه و تحلیل و علوم داده: چشم انداز مدیریتی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
برای دورههای هوش تجاری یا سیستمهای پشتیبانی
تصمیم.
رویکرد مدیریتی برای درک سیستمهای هوش تجاری.
برای کمک به مدیران آینده در استفاده و درک تحلیلها ,هوش
تجاریبه دانش آموزان پایه ای محکم از BI می دهد که با تمرین
عملی تقویت می شود.
For courses on Business Intelligence or Decision Support
Systems.
A managerial approach to understanding business intelligence
systems.
To help future managers use and understand
analytics,Business Intelligenceprovides students with a
solid foundation of BI that is reinforced with hands-on
practice.
Cover......Page 1
Title Page......Page 2
Copyright Page......Page 3
Brief Contents......Page 4
Contents......Page 6
Preface......Page 20
Acknowledgments......Page 23
About the Authors......Page 26
Chapter 1: An Overview of Business Intelligence, Analytics, and Data Science......Page 30
1.1. Opening Vignette: Sports Analytics—An Exciting Frontier for Learning and Understanding Applications of Analytics......Page 31
1.2. Changing Business Environments and Evolving Needs for Decision Support and Analytics......Page 38
1.3. Evolution of Computerized Decision Support to Analytics/Data Science......Page 40
1.4. A Framework for Business Intelligence......Page 42
The Origins and Drivers of BI......Page 43
Application Case 1.1: Sabre Helps Its Clients Through Dashboards and Analytics......Page 45
Transaction Processing versus Analytic Processing......Page 46
Appropriate Planning and Alignment with the Business Strategy......Page 47
Developing or Acquiring BI Systems......Page 48
1.5. Analytics Overview......Page 49
Application Case 1.2: Silvaris Increases Business with Visual Analysis and Real-Time Reporting Capabilities......Page 51
Predictive Analytics......Page 52
Prescriptive Analytics......Page 53
Application Case 1.5: A Specialty Steel Bar Company Uses Analytics to Determine Available-to-Promise Dates......Page 54
Analytics or Data Science?......Page 55
Analytics Applications in Healthcare—Humana Examples......Page 56
Analytics in the Retail Value Chain......Page 60
What Is Big Data?......Page 62
1.8. An Overview of the Analytics Ecosystem......Page 64
Data Management Infrastructure Providers......Page 66
Data Service Providers......Page 67
Analytics-Focused Software Developers......Page 68
Application Developers: Industry Specific or General......Page 69
Analytics Industry Analysts and Influencers......Page 70
Academic Institutions and Certification Agencies......Page 71
Analytics User Organizations......Page 72
1.9. Plan of the Book......Page 73
Resources and Links......Page 74
The Book’s Web Site......Page 75
Questions for Discussion......Page 76
Exercises......Page 77
References......Page 78
Chapter 2: Descriptive Analytics I: Nature of Data, Statistical Modeling, and Visualization......Page 80
2.1. Opening Vignette: SiriusXM Attracts and Engages a New Generation of Radio Consumers with Data-Driven Marketing......Page 81
2.2. The Nature of Data......Page 84
2.3. A Simple Taxonomy of Data......Page 88
Application Case 2.1: Medical Device Company Ensures Product Quality While Saving Money......Page 90
2.4. The Art and Science of Data Preprocessing......Page 92
Application Case 2.2: Improving Student Retention with Data-Driven Analytics......Page 95
2.5. Statistical Modeling for Business Analytics......Page 101
Descriptive Statistics for Descriptive Analytics......Page 102
Arithmetic Mean......Page 103
Measures of Dispersion (May Also Be Called Measures of Spread Decentrality)......Page 104
Quartiles and Interquartile Range......Page 105
Box-and-Whiskers Plot......Page 106
The Shape of a Distribution......Page 107
Application Case 2.3: Town of Cary Uses Analytics to Analyze Data from Sensors, Assess Demand, and Detect Problems......Page 111
2.6 Regression Modeling for Inferential Statistics......Page 113
How Do We Develop the Linear Regression Model?......Page 114
How Do We Know If the Model Is Good Enough?......Page 115
What Are the Most Important Assumptions in Linear Regression?......Page 116
Logistic Regression......Page 117
Application Case 2.4: Predicting NCAA Bowl Game Outcomes......Page 118
Time Series Forecasting......Page 123
2.7. Business Reporting......Page 125
Application Case 2.5: Flood of Paper Ends at FEMA......Page 127
A Brief History of Data Visualization......Page 128
Application Case 2.6: Macfarlan Smith Improves Operational Performance Insight with Tableau Online......Page 130
Basic Charts and Graphs......Page 133
Specialized Charts and Graphs......Page 134
Which Chart or Graph Should You Use?......Page 135
2.10. The Emergence of Visual Analytics......Page 137
High-Powered Visual Analytics Environments......Page 139
2.11. Information Dashboards......Page 144
Application Case 2.7: Dallas Cowboys Score Big with Tableau and Teknion......Page 145
Application Case 2.8: Visual Analytics Helps Energy Supplier Make Better Connections......Page 146
Wrap the Dashboard Metrics with Contextual Metadata......Page 148
Provide for Guided Analytics......Page 149
Key Terms......Page 150
Exercises......Page 151
References......Page 153
Chapter 3: Descriptive Analytics II: Business Intelligence and Data Warehousing......Page 154
3.1. Opening Vignette: Targeting Tax Fraud with Business Intelligence and Data Warehousing......Page 155
3.2. Business Intelligence and Data Warehousing......Page 157
What Is a Data Warehouse?......Page 158
A Historical Perspective to Data Warehousing......Page 159
Characteristics of Data Warehousing......Page 160
Data Marts......Page 161
Application Case 3.1: A Better Data Plan: Well- Established TELCOs Leverage Data Warehousing and Analytics to Stay on Top in a Competitive Industry......Page 162
3.3. Data Warehousing Process......Page 164
3.4. Data Warehousing Architectures......Page 166
Alternative Data Warehousing Architectures......Page 169
Which Architecture Is the Best?......Page 171
3.5. Data Integration and the Extraction, Transformation, and Load (ETL) Processes......Page 172
Application Case 3.2: BP Lubricants Achieves BIGS Success......Page 173
Extraction, Transformation, and Load......Page 175
3.6. Data Warehouse Development......Page 177
Application Case 3.3: Use of Teradata Analytics for SAP Solutions Accelerates Big Data Delivery......Page 178
Data Warehouse Development Approaches......Page 180
Representation of Data in Data Warehouse......Page 183
OLAP versus OLTP......Page 185
OLAP Operations......Page 186
3.7. Data Warehousing Implementation Issues......Page 187
Massive Data Warehouses and Scalability......Page 189
Application Case 3.4: EDW Helps Connect State Agencies in Michigan......Page 190
3.8. Data Warehouse Administration, Security Issues, and Future Trends......Page 191
The Future of Data Warehousing......Page 192
3.9. Business Performance Management......Page 197
Closed-Loop BPM Cycle......Page 198
Application Case 3.5: AARP Transforms Its BI Infrastructure and Achieves a 347% ROI in Three Years......Page 200
Key Performance Indicator (KPI)......Page 202
Performance Measurement System......Page 203
The Four Perspectives......Page 204
3.12. Six Sigma as a Performance Measurement System......Page 206
Balanced Scorecard versus Six Sigma......Page 207
Effective Performance Measurement......Page 208
Application Case 3.6: Expedia.com’s Customer Satisfaction Scorecard......Page 209
Chapter Highlights......Page 210
Questions for Discussion......Page 211
Exercises......Page 212
References......Page 214
Chapter 4: Predictive Analytics I: Data Mining Process, Methods, and Algorithms......Page 216
4.1. Opening Vignette: Miami-Dade Police Department Is Using Predictive Analytics to Foresee and Fight Crime......Page 217
4.2. Data Mining Concepts and Applications......Page 220
Application Case 4.1: Visa Is Enhancing the Customer Experience While Reducing Fraud with Predictive Analytics and Data Mining......Page 221
Definitions, Characteristics, and Benefits......Page 223
How Data Mining Works......Page 224
Application Case 4.2: Dell Is Staying Agile and Effective with Analytics in the 21st Century......Page 225
4.3. Data Mining Applications......Page 230
Application Case 4.3: Bank Speeds Time to Market with Advanced Analytics......Page 232
4.4. Data Mining Process......Page 233
Step 1: Business Understanding......Page 234
Step 3: Data Preparation......Page 235
Application Case 4.4: Data Mining Helps in Cancer Research......Page 236
Other Data Mining Standardized Processes and Methodologies......Page 239
Classification......Page 242
Estimating the True Accuracy of Classification Models......Page 243
Application Case 4.5: Influence Health Uses Advanced Predictive Analytics to Focus on the Factors That Really Influence People’s Healthcare Decisions......Page 250
Cluster Analysis for Data Mining......Page 252
Association Rule Mining......Page 254
4.6. Data Mining Software Tools......Page 258
Application Case 4.6: Data Mining Goes to Hollywood: Predicting Financial Success of Movies......Page 260
4.7. Data Mining Privacy Issues, Myths, and Blunders......Page 264
Data Mining Myths and Blunders......Page 265
Chapter Highlights......Page 268
Questions for Discussion......Page 269
Exercises......Page 270
References......Page 272
Chapter 5: Predictive Analytics II: Text, Web, and Social Media Analytics......Page 274
5.1. Opening Vignette: Machine versus Men on Jeopardy!: The Story of Watson......Page 275
5.2. Text Analytics and Text Mining Overview......Page 278
Application Case 5.1: Insurance Group Strengthens Risk Management with Text Mining Solution......Page 281
5.3. Natural Language Processing (NLP)......Page 282
Application Case 5.2: AMC Networks Is Using Analytics to Capture New Viewers, Predict Ratings, and Add Value for Advertisers in a Multichannel World......Page 284
Security Applications......Page 288
Application Case 5.3: Mining for Lies......Page 289
Biomedical Applications......Page 291
Application Case 5.4: Bringing the Customer into the Quality Equation: Lenovo Uses Analytics to Rethink Its Redesign......Page 293
5.5. Text Mining Process......Page 295
Task 2: Create the Term–Document Matrix......Page 296
Task 3: Extract the Knowledge......Page 298
Application Case 5.5: Research Literature Survey with Text Mining......Page 300
5.6. Sentiment Analysis......Page 303
Application Case 5.6: Creating a Unique Digital Experience to Capture the Moments That Matter at Wimbledon......Page 304
Sentiment Analysis Applications......Page 307
Sentiment Analysis Process......Page 309
Using a Lexicon......Page 311
Using a Collection of Training Documents......Page 312
Identifying Semantic Orientation of Documents......Page 313
5.7. Web Mining Overview......Page 314
Web Content and Web Structure Mining......Page 316
5.8. Search Engines......Page 318
1. Development Cycle......Page 319
Search Engine Optimization......Page 321
Methods for Search Engine Optimization......Page 322
Application Case 5.7: Understanding Why Customers Abandon Shopping Carts Results in a $10 Million Sales Increase......Page 324
5.9. Web Usage Mining (Web Analytics)......Page 325
Web Analytics Technologies......Page 326
Web Site Usability......Page 327
Traffic Sources......Page 328
Conversion Statistics......Page 329
Social Network Analysis......Page 331
Application Case 5.8: Tito’s Vodka Establishes Brand Loyalty with an Authentic Social Strategy......Page 332
Distributions......Page 335
Social Media Analytics......Page 336
How Do People Use Social Media?......Page 337
Best Practices in Social Media Analytics......Page 338
Chapter Highlights......Page 340
Key Terms......Page 341
Exercises......Page 342
References......Page 343
Chapter 6: Prescriptive Analytics: Optimization and Simulation......Page 346
6.1. Opening Vignette: School District of Philadelphia Uses Prescriptive Analytics to Find Optimal Solution for Awarding Bus Route Contracts......Page 347
Prescriptive Analytics Model Examples......Page 349
Application Case 6.1: Optimal Transport for ExxonMobil Downstream through a DSS......Page 350
Model Categories......Page 351
Application Case 6.2: Ingram Micro Uses Business Intelligence Applications to Make Pricing Decisions......Page 352
The Components of Decision Support Mathematical Models......Page 355
The Structure of Mathematical Models......Page 356
Decision Making under Certainty......Page 357
6.5. Decision Modeling with Spreadsheets......Page 358
Application Case 6.3: Primary Schools in Slovenia Use Interactive and Automated Scheduling Systems to Produce Quality Timetables......Page 359
Application Case 6.4: Spreadsheet Helps Optimize Production Planning in Chilean Swine Companies......Page 360
Application Case 6.5: Metro Meals on Wheels Treasure Valley Uses Excel to Find Optimal Delivery Routes......Page 361
6.6 Mathematical Programming Optimization......Page 363
Application Case 6.6: Mixed-Integer Programming Model Helps the University of Tennessee Medical Center with Scheduling Physicians......Page 364
Linear Programming Model......Page 365
Modeling in LP: An Example......Page 366
Implementation......Page 371
Multiple Goals......Page 373
Sensitivity Analysis......Page 374
Goal Seeking......Page 375
6.8. Decision Analysis with Decision Tables and Decision Trees......Page 376
Decision Tables......Page 377
Decision Trees......Page 378
Major Characteristics of Simulation......Page 379
Application Case 6.7: Syngenta Uses Monte Carlo Simulation Models to Increase Soybean Crop Production......Page 380
Advantages of Simulation......Page 381
The Methodology of Simulation......Page 382
Simulation Types......Page 383
Monte Carlo Simulation......Page 384
Application Case 6.8: Cosan Improves Its Renewable Energy Supply Chain Using Simulation......Page 385
Visual Interactive Simulation......Page 386
Simulation Software......Page 387
Application Case 6.9: Improving Job-Shop Scheduling Decisions through RFID: A Simulation-Based Assessment......Page 388
Key Terms......Page 391
Exercises......Page 392
References......Page 394
Chapter 7: Big Data Concepts and Tools......Page 396
7.1. Opening Vignette: Analyzing Customer Churn in a Telecom Company Using Big Data Methods......Page 397
7.2. Definition of Big Data......Page 400
The “V”s That Define Big Data......Page 401
Application Case 7.1: Alternative Data for Market Analysis or Forecasts......Page 404
7.3. Fundamentals of Big Data Analytics......Page 405
Business Problems Addressed by Big Data Analytics......Page 408
Application Case 7.2: Top Five Investment Bank Achieves Single Source of the Truth......Page 409
MapReduce......Page 410
How Does Hadoop Work?......Page 412
Hadoop Technical Components......Page 413
Hadoop: The Pros and Cons......Page 414
NoSQL......Page 416
Application Case 7.3: eBay’s Big Data Solution......Page 417
Application Case 7.4: Understanding Quality and Reliability of Healthcare Support Information on Twitter......Page 419
Use Cases for Hadoop......Page 420
Use Cases for Data Warehousing......Page 421
The Gray Areas (Any One of the Two Would Do the Job)......Page 422
Coexistence of Hadoop and Data Warehouse......Page 423
7.6. Big Data Vendors and Platforms......Page 424
IBM InfoSphere BigInsights......Page 425
Application Case 7.5: Using Social Media for Nowcasting the Flu Activity......Page 427
Teradata Aster......Page 428
Application Case 7.6: Analyzing Disease Patterns from an Electronic Medical Records Data Warehouse......Page 429
7.7. Big Data and Stream Analytics......Page 433
Data Stream Mining......Page 435
Telecommunications......Page 436
Application Case 7.7: Salesforce Is Using Streaming Data to Enhance Customer Value......Page 437
Health Sciences......Page 438
Chapter Highlights......Page 439
Exercises......Page 440
References......Page 441
Chapter 8: Future Trends, Privacy and Managerial Considerations in Analytics......Page 444
8.1. Opening Vignette: Analysis of Sensor Data Helps Siemens Avoid Train Failures......Page 445
8.2. Internet of Things......Page 446
Application Case 8.1: SilverHook Powerboats Uses Real-Time Data Analysis to Inform Racers and Fans......Page 447
Application Case 8.2: Rockwell Automation Monitors Expensive Oil and Gas Exploration Assets......Page 448
RFID Sensors......Page 449
Fog Computing......Page 452
Application Case 8.3: Pitney Bowes Collaborates with General Electric IoT Platform to Optimize Production......Page 453
IoT Start-Up Ecosystem......Page 454
Managerial Considerations in the Internet of Things......Page 455
8.3. Cloud Computing and Business Analytics......Page 456
Data as a Service (DaaS)......Page 458
Infrastructure as a Service (IaaS)......Page 459
Cloud Deployment Models......Page 460
Major Cloud Platform Providers in Analytics......Page 461
Representative Analytics as a Service Offerings......Page 462
MD Anderson Cancer Center Utilizes Cognitive Computing Capabilities of IBM Watson to Give Better Treatment to Cancer Patients......Page 463
Public School Education in Tacoma, Washington, Uses Microsoft Azure Machine Learning to Predict School Dropouts......Page 464
Mankind Pharma Uses IBM Cloud Infrastructure to Reduce Application Implementation Time by 98%......Page 465
Gulf Air Uses Big Data to Get Deeper Customer Insight......Page 466
Chime Enhances Customer Experience Using Snowflake......Page 467
Geospatial Analytics......Page 468
Application Case 8.4: Indian Police Departments Use Geospatial Analytics to Fight Crime......Page 470
Application Case 8.5: Starbucks Exploits GIS and Analytics to Grow Worldwide......Page 471
Real-Time Location Intelligence......Page 472
Analytics Applications for Consumers......Page 473
Legal Issues......Page 475
Collecting Information about Individuals......Page 476
Homeland Security and Individual Privacy......Page 477
Recent Technology Issues in Privacy and Analytics......Page 478
Ethics in Decision Making and Support......Page 479
8.6. Impacts of Analytics in Organizations: An Overview......Page 480
New Organizational Units......Page 481
Analytics Impact on Managers’ Activities, Performance, and Job Satisfaction......Page 482
Industrial Restructuring......Page 483
Automation’s Impact on Jobs......Page 484
Unintended Effects of Analytics......Page 485
Where Do Data Scientists Come From?......Page 486
Chapter Highlights......Page 489
Exercises......Page 490
References......Page 491
Glossary......Page 494
Index......Page 502
Back Cover......Page 514