دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
دسته بندی: پایگاه داده ها ویرایش: نویسندگان: Pieter Pauwels. Kris McGlinn سری: ISBN (شابک) : 1032023120, 9781032023120 ناشر: CRC Press سال نشر: 2022 تعداد صفحات: 329 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 23 مگابایت
در صورت تبدیل فایل کتاب Buildings and Semantics: Data Models and Web Technologies for the Built Environment به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب ساختمان ها و معناشناسی: مدل های داده و فناوری های وب برای محیط ساخته شده نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
محیط ساخته شده به سرعت در حال دیجیتالی شدن است و اکنون در حال تبدیل شدن به یک دنیای فیزیکی است که همیشه با یک نسخه دیجیتالی کاملاً تحت وب و متصل به هم تکمیل می شود که اغلب به عنوان Digital Twin از آن یاد می شود. این کتاب نشان میدهد که چگونه مدلهای دادهای متنوع و فناوریهای وب میتوانند برای محیط ساخته شده ایجاد و استفاده شوند. ویژگی های کلیدی این کتاب ماهیت فنی و جزئیات فنی آن است. بخش اول کتاب به تنوع زیادی از تکنیکهای فناوری اطلاعات و استفاده از آنها در حوزه AEC، از JSON تا XML تا EXPRESS تا RDF/OWL، برای مدلسازی هندسه، محصولات، ویژگیها، دادههای حسگر و انرژی اشاره میکند. بخش دوم کتاب بر راهحلها و رویکردهای نرمافزاری متنوع، از جمله دوقلوهای دیجیتال، ذخیرهسازی فدرال دادهها در وب، اینترنت اشیا، رایانش ابری و شهرهای هوشمند تمرکز دارد. فرصت های کلیدی تحقیق و توسعه استراتژیک به طور جامع برای مدیریت داده های ساختمان مبتنی بر وب توزیع شده، یکپارچه سازی اینترنت اشیا و محاسبات ابری مورد بحث قرار گرفته است. هدف این کتاب این است که به عنوان یک راهنما و مرجع برای متخصصان و متخصصان در محاسبات AEC و ساخت و ساز دیجیتال از جمله دانشجویان کارشناسی ارشد، محققان دکترا، و متخصصان حرفه ای AEC با محوریت IT حرفه ای کوچک تا ارشد باشد.
The built environment has been digitizing rapidly and is now transforming into a physical world that is at all times supplemented by a fully web-supported and interconnected digital version, often referred to as Digital Twin. This book shows how diverse data models and web technologies can be created and used for the built environment. Key features of this book are its technical nature and technical detail. The first part of the book highlights a large diversity of IT techniques and their use in the AEC domain, from JSON to XML to EXPRESS to RDF/OWL, for modelling geometry, products, properties, sensor and energy data. The second part of the book focuses on diverse software solutions and approaches, including digital twins, federated data storage on the web, IoT, cloud computing, and smart cities. Key research and strategic development opportunities are comprehensively discussed for distributed web-based building data management, IoT integration and cloud computing. This book aims to serve as a guide and reference for experts and professionals in AEC computing and digital construction including Master's students, PhD researchers, and junior to senior IT-oriented AEC professionals.
Cover Half Title Title Page Copyright Page Table of Contents Figures Tables About the authors Contributors Foreword Preface Acronyms Part I: Semantics and data 1 Building product models, terminologies, and object type libraries 1.1 Introduction 1.1.1 A brief history of CAD/BIM 1.1.2 Tackling CAD/BIM data exchange 1.1.3 Seamless data exchange: the endemic problem 1.2 Concepts and definitions 1.2.1 Chapter definitions 1.3 Structured vocabularies 1.3.1 Structured vocabulary types 1.3.1.1 Classification systems 1.3.1.2 Taxonomy 1.3.1.3 Ontology 1.3.1.4 Data dictionary 1.3.1.5 Object-type library 1.3.2 Functionality and features 1.3.2.1 Object-oriented functionality 1.3.2.2 Semantics and logic 1.4 Digital building exchange formats and schemas 1.4.1 Semantic web and linked data 1.4.1.1 Resource description framework (RDF) 1.4.1.2 Web ontology language (OWL) 1.4.1.3 Simple knowledge organisation system (SKOS) 1.4.2 ISOs for building classifications 1.5 Methods and techniques 1.5.1 Product and solid modelling techniques 1.5.2 Information collection mechanisms 1.5.3 Development and management 1.6 Practical examples in the AECO industry 1.6.1 Core vocabularies and linked datasets 1.6.2 Existing AECO ontologies 1.6.3 Existing OTLs and data dictionaries 1.7 Open research challenges 1.7.1 System limitations 1.7.2 Open standard limitations 1.8 Conclusion Notes 2 Property modelling in the AECO industry 2.1 Introduction 2.1.1 Simple property names and values 2.1.2 More complex property names and values with metadata included 2.2 Guidelines and state of practice for modelling and exchanging properties 2.2.1 Definition of properties 2.2.1.1 Entity relationship diagrams (ERD) 2.2.1.2 UML class diagrams 2.2.2 Application and use of defined properties 2.3 Property modelling approaches 2.3.1 Simplified property modelling 2.3.1.1 Advantages 2.3.1.2 Disadvantages 2.3.1.3 Primary scenarios of use 2.3.1.4 Requirements 2.3.1.5 IFC-SPFF example 2.3.2 Complex property modelling 2.3.2.1 Advantages 2.3.2.2 Disadvantages 2.3.2.3 Primary scenarios of use 2.3.2.4 Requirements 2.3.2.5 IFC-SPFF example 2.4 Asserting properties in a semantic web context 2.4.1 Methods to attach properties 2.4.2 Units for quantitative properties 2.5 Graph patterns for property modelling 2.5.1 Level 1 2.5.2 Level 2 2.5.3 Level 3 2.5.4 Summary 2.6 Property definitions for usage in a semantic web context 2.6.1 Approach 1: hierarchy of rdf:Property 2.6.2 Approach 2: hierarchy of owl:AnnotationProperty 2.6.3 Approach 3: hierarchy of owl:DatatypeProperty and owl:ObjectProperty 2.6.4 Approach 4: hierarchy of owl:Class 2.6.5 Approach 5: hierarchy of skos:Concept 2.7 Towards a recommended modelling of properties 2.7.1 Available implementations 2.7.2 Recommendations 2.8 Conclusion Acknowledgements Notes 3 Web technologies for sensor and energy data models 3.1 Introduction 3.2 Model-based approaches to assessing the energy performance of buildings 3.2.1 Analysis and prediction of the energy performance of buildings 3.2.2 Monitoring and sensor data 3.2.3 Access and use of energy data 3.2.4 Energy analysis in BIM-based projects 3.2.5 Energy performance certification 3.3 Energy data models 3.3.1 System approach definition 3.3.2 Energy modelling of buildings and cities 3.3.3 Standards 3.3.4 Ontologies 3.3.4.1 Ontologies in the construction sector 3.3.4.2 Ontologies in the energy domain 3.3.4.3 Ontologies and sensors 3.3.5 Research projects 3.4 Enabling technologies for sensor data-based applications 3.4.1 Building sensor data and technologies 3.4.2 Storing and accessing building sensor data 3.5 Conclusions Notes 4 Geometry and geospatial data on the web 4.1 Introduction 4.2 Geometry and geospatial data 4.2.1 Terminology 4.2.2 Importance of geometry and geospatial data to AEC 4.2.2.1 Integration in traditional BIM 4.2.2.2 Challenges in traditional BIM 4.3 Integrating geometry and geospatial data in a web context 4.3.1 Approach 1: RDF-based geometry descriptions 4.3.1.1 Lists in RDF 4.3.2 Approach 2: JSON-LD for web geometry 4.3.3 Approach 3: Non-RDF geometry as RDF literals 4.3.4 Approach 4: Linking to Non-RDF geometry files 4.3.5 Multiple geometry descriptions 4.4 Existing implementations for integration of graphs 4.4.1 Ontology for managing geometry (OMG) 4.4.1.1 Level 1: referencing geometry descriptions in a semantic web context 4.4.1.2 Level 2: handling multiple geometry descriptions 4.4.1.3 Level 3: versioning geometry descriptions 4.4.1.4 Explicit and implicit dependencies 4.4.1.5 Summary 4.4.2 File ontology for geometry formats (FOG) 4.4.3 Geometry metadata ontology (GOM) 4.4.4 Summary 4.5 Tools for integrating geometry and geospatial data 4.5.1 Spatial querying 4.5.1.1 GeoSPARQL 4.5.1.2 stSPARQL 4.5.1.3 BimSPARQL 4.5.1.4 Geospatial geometric literals 4.5.2 Transforming and viewing geometry 4.5.2.1 LBDserver 4.5.2.2 Visualising heterogeneous geometry descriptions 4.5.2.3 Data service for RDF-based geometry descriptions 4.5.2.4 Integrating geospatial data and building data 4.5.3 Conversion of geospatial data to industry foundation classes 4.5.4 Conversion of industry foundation classes to geospatial data 4.5.4.1 Interlinking geospatial building data with DBpedia data 4.5.4.2 Applications to support querying of interlinked geospatial data 4.6 Conclusion Notes 5 Open data standards and BIM on the cloud 5.1 Introduction 5.1.1 Building data interoperability 5.1.2 Data exchange 5.1.3 Standardisation versus flexibility 5.2 IFC: the leading standard for BIM data 5.2.1 IFC data model 5.2.2 Modularity in IFC 5.2.3 Partial exchanges in IFC 5.3 How to move the data to the cloud? 5.3.1 XML 5.3.1.1 XML from IfcDoc 5.3.1.2 XML from IFC.JAVA class library 5.3.1.3 XML from Autodesk Revit 5.3.2 JSON 5.3.3 RDF 5.4 Data modelling Approach 1: backwards compatible file transformations and data exchanges 5.4.1 Full file serialisations 5.4.2 File size 5.4.3 Round-tripping 5.4.4 File metadata 5.4.5 Inverse relationships 5.4.6 Polymorphism 5.4.7 Internal and external referencing 5.4.8 Exchange processes 5.5 Data modelling Approach 2: forward towards online data linking 5.5.1 Modular snippets 5.5.2 Web services and microservices 5.5.3 What about the 2D and 3D geometry? 5.5.4 Exchange processes: open APIs and CDEs 5.6 Data modelling Approach 3: JSON-LD 5.6.1 What is JSON-LD? 5.6.2 Standardisation inside the JSON specification of data 5.6.3 Unique referencing using URIs 5.6.4 Inverse relationships and polymorphism 5.6.5 Exchange processes and the use of framing 5.7 Example applications and consuming web services 5.7.1 Convertors, translators and transmuters 5.7.2 Rhino and grasshopper scripting 5.7.3 JSONPath-enabled queries 5.8 Conclusion: challenges for the future 5.8.1 A taxonomy of data representation characteristics 5.8.1.1 Encoding 5.8.1.2 Concepts 5.8.1.3 Terminology 5.8.1.4 Structure 5.8.2 Flexibility and standardisation 5.8.3 Towards service-oriented and web-based data handling architectures Notes Part II: Algorithms and applications 6 Federated data storage for the AEC industry 6.1 Introduction 6.2 Towards web-based construction projects 6.2.1 Connecting to open datasets 6.2.2 Automatic compliance checking 6.2.3 Relating project specifications to products on the market 6.2.4 Automatic revision of the federated model 6.2.5 Managing on-site data streams 6.3 Integrating contextual data and microservices 6.3.1 Web APIs 6.3.1.1 JSON and JSON-LD 6.3.1.2 API architectures 6.3.2 Consuming data on the web 6.3.3 Microservices 6.4 Existing environments 6.4.1 Non-specialised environments 6.4.2 AEC-specific environments 6.5 Containerisation of heterogeneous datasets in construction 6.5.1 Existing specifications on information containers 6.5.1.1 BS 1192:2007 and PAS 1192-2:2013 6.5.1.2 ISO 19650-1/2:2018 6.5.1.3 DIN SPEC 91391-2:2019 6.5.1.4 Linked Data Platform 6.5.2 ISO 21597: Information Container for linked Document Delivery (ICDD) 6.5.2.1 ICDD in a CDE 6.5.2.2 Limitations and future work 6.6 Federated project data 6.6.1 Decentral identity verification 6.6.2 Federated data storage, authentication and authorisation 6.7 Collaboration structures for the future 6.7.1 The stakeholder network 6.7.2 The project management graph 6.8 Conclusion Notes 7 Web-based computing for the AEC industry: overview and applications 7.1 Introduction 7.2 Cloud computing 7.3 Web-based computing tools in the AEC industry 7.3.1 Opportunities 7.3.2 Challenges 7.4 Use cases and scenarios 7.4.1 Web-enabling by wrapping 7.4.1.1 Transforming legacy data and code 7.4.1.2 Virtualisation 7.4.1.3 Containers and wrapping in the EnergyMatching platform 7.4.1.4 Platform architecture 7.4.2 Mashups 7.4.2.1 Construction project quick view platform 7.4.2.2 Extensibility 7.5 Conclusion Notes 8 Digital twins for the built environment 8.1 Introduction 8.1.1 The digital twin concept 8.1.2 Related concepts in research 8.1.3 Landscape of nearby engineering domains 8.2 Requirements, technologies and abilities 8.2.1 Digital twin requirements 8.2.2 Digital twin technologies & abilities 8.2.3 Digital twin levels 8.2.4 Standards for digital twins 8.3 Domains within the built environment 8.3.1 Digital twin implementation examples 8.3.2 Digital twin development initiatives 8.4 A reference framework 8.4.1 Conceptual system architecture 8.4.2 The role of semantics 8.5 The future of digital twins Notes 9 The building as a platform: predictive digital twinning 9.1 Introduction 9.1.1 Digital twins and intelligent buildings 9.1.2 Digital twinning 9.2 Background 9.2.1 The challenges 9.2.2 The potentials 9.2.3 Machine learning and advanced sensing 9.3 The University of Toronto intelligent buildings digital twin project 9.3.1 Phases 1 and 2 9.3.1.1 IBDT for UofT facilities and services 9.3.1.2 IBDT for building stakeholders 9.3.2 Phase 3 9.3.3 Project outcomes 9.4 Summary and conclusion Note 10 IoT and edge computing in the construction site 10.1 Introduction 10.2 Construction industry: push-pull to construction 4.0 and IoT 10.3 IoT system framework 10.3.1 Edge computing 10.3.2 IoT and edge computing enabled intelligent job site 10.4 IoT connectivity and requirements 10.4.1 Networking: 6LowPAN, RPL, and LoRaWAN 10.4.2 Identification 10.4.3 Communications 10.4.4 Discovery 10.4.5 Data protocols 10.5 IoT system network management 10.6 Gaps 10.6.1 Lack of evaluation and performance metrics for IoT technology in the construction environment 10.6.2 No valuation assessment tools of the implementation of IoT-based solutions in construction 10.6.3 No standards for IoT deployment in construction 10.6.4 No “one-fits-all” IoT solution for construction 10.7 Outlook and conclusion Notes 11 Smart cities and buildings 11.1 Introduction 11.2 Smart cities 11.2.1 Features of a smart city 11.2.2 Smart buildings and homes 11.2.2.1 Definitions and terms 11.2.2.2 An interconnected smart environment 11.2.2.3 Smart building architectures 11.2.3 Smart energy systems and grids 11.2.4 Smart mobility and transport 11.3 Digital transformation in smart cities 11.4 Data infrastructure and open data initiatives in smart cities 11.4.1 Use case: Bonn 11.4.2 Use case: Dublin 11.4.3 Use case: Toronto 11.4.4 Use case: Singapore 11.4.5 Use case: Tokyo 11.5 Linked data for smart cities 11.5.1 Implementation of linked data in smart city projects 11.5.2 Linked data for smart energy system 11.6 Data analytics approaches 11.6.1 Descriptive analytics 11.6.2 Diagnostics analytics 11.6.3 Predictive analytics 11.6.4 Prescriptive analytics overview 11.7 Conclusion 11.8 Acknowledgement Notes Bibliography Index