دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش:
نویسندگان: Vijayalaxmi J.
سری: Lecture Notes in Civil Engineering, 316
ISBN (شابک) : 9811991383, 9789811991387
ناشر: Springer
سال نشر: 2023
تعداد صفحات: 202
[203]
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 9 Mb
در صورت تبدیل فایل کتاب Building Thermal Performance and Sustainability به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب عملکرد حرارتی و پایداری ساختمان نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این کتاب جنبه های مختلف تحقیقات معماری را بر اساس مطالعات میدانی و داده های بلادرنگ از جمله روش های جمع آوری داده ها و روش شناسی و مواد مورد نیاز برجسته می کند. خروجی هر مطالعه تصمیم مبتنی بر دانش و آگاهانه است که به معماران و طراحان در فرآیند تصمیم گیری در مراحل اولیه کمک می کند. خروجی کتاب روشهای تحقیق معماری و کاربرد آن در دنیای معاصر را از طریق درک کامل مصالح ساختمانی پایدار، تکنیکهای ساخت و ساز و پیامدهای کمی آن بر عملکرد حرارتی پل میکند. هدف این کتاب محققان و متخصصان برای کمک به درک استراتژیها، تاکتیکها و روشهای یک رویکرد علمی برای ارزیابی عملکرد ساختمان از طریق مطالعات موردی واقعی از هند است. مفهوم کاری که در دنیای معاصر انجام می شود برجسته شده است که به معماران حرفه ای در تصمیم گیری در مورد طراحی کمک می کند. را
This book highlights the various aspects of architectural research based on field studies and real-time data including the data collection methods and the methodology and materials required. The output of every study is knowledge based and informed decision that helps architects and designers in decision making process at an early stage. The output of the book bridges the architectural research methods and its application in contemporary world through a thorough understanding of sustainable building materials, construction techniques and its quantified consequences on thermal performance. This book is aimed at researchers and professionals to assist in understanding the strategies, tacts and methods of a scientific approach to assess building performance through real-life case studies from India. The implication of what is being done in the contemporary world is highlighted which will help practicing architects make design decisions.
Foreword Preface Contents About the Author Building Thermal Performance and Sustainability Issues 1 Aspects to Pertaining to Building Thermal Performance 1.1 Heat Stress in Buildings 1.2 Performance of Buildings—Assessment Methods 1.3 Smart Materials and Nanotechnology for Sustainability 2 Conclusion Appropriate Heat Stress Index to Assess Heat Stress in Built Environment in India 1 Introduction 1.1 Heat Stress 1.2 Heat Stress in Industries and Rural Houses 1.3 Heat Wave 1.4 Heat Stress Indices 2 Discussion 3 Conclusion References Assessment of Heat Stress Index of Rural Houses in Heat wave-Prone Hot-Humid Climate of Andhra Pradesh, India 1 Introduction 2 Heat Stress and Heat Stress Index 3 Objectives of This Study 4 Materials and Methodology 4.1 Study Design and Study Population 4.2 Site Location 4.3 Indoor Data Collection 5 Results of Assessment of Indoor WBGT 5.1 Comparison of WBGT in All the Five Houses 5.2 Comparison of Outdoor and Indoor Temperatures in the Five Houses 5.3 The Difference in Indoor WBGT Between the Conventional RCC Roof and Other Houses with Reed Roof 5.4 Comparison of WBGT of RCC Roof and Reed Roof 5.5 WBGT Limits for Moderate Work in All Five Houses 6 Discussion 7 Strengths and Limitations of the Study 8 Conclusion References Methods of Assessing Thermal Performance of Buildings 1 Introduction 2 Methods of Assessing the Thermal Performance 2.1 Understanding Steady-State Models 2.2 Understanding Empirical Models 2.3 Understanding Dynamic Models—Software and Tools 3 Improvements in Simulation Tools 4 Conclusion References Steady-State Assessment of Vertical Greenery Systems on the Thermal Resistance of the Wall and Its Correlation with Thermal Insulation 1 Introduction 2 Methodology 2.1 Thermal Resistance 3 Findings 4 Discussion 5 Conclusion References Thermal Performance of Bamboo Flat Roof Slab and RCC Flat Roof Filler Slab in Warm-Humid Climate 1 Introduction 2 Methods and Methodology 2.1 Study Area 2.2 Field Study 2.3 Study Methodology 3 Study on Thermal Performance Parameters Before Field Study and Data Collection 3.1 The Time Lag and Decrement Factor 3.2 Thermal Performance Index 4 Distribution of Air and Surface Temperature During Field Study 5 Comparative Analysis 5.1 Temperature Range, Minimum, and Maximum 5.2 Comparative Study with Respect to Parameters on Thermal Performance 6 Discussion 7 Conclusion References Empirical and Dynamic Simulation-Based Assessment of Indoor Thermal Performance in Naturally Ventilated Buildings 1 Introduction 1.1 Background of the Study 2 Methodology 2.1 Components of Study 2.2 Climate Characteristics of the Region 2.3 Context of Relational Real-Scale Building 3 Design of the Relational Experimental Set-Up 4 Data Collection Method 5 Generation of Predictive Model 5.1 Building Modeling and Simulation Settings for DesignBuilder and Rhino 5.2 Variables and Constrains for the Models Using DesignBuilder and Rhino 6 Results 6.1 Outdoor Data Input 6.2 Correlation Between Indoor Temperature from Real-Scale and Simulation Model 6.3 Analysis of Real-Scale and Simulated Results 7 Validation of Predictive Model 7.1 Use of Ceiling Fans in a Hot-Humid Climate 7.2 Use of Flyscreens in a Hot-Humid Climate 8 Results and Discussion 9 Conclusion References Study of Indoor Thermal Performance Due to Varying Ceiling Heights in a Hot-Humid Climate 1 Introduction 1.1 Background of the Study 2 Ceiling Heights in Building Codes 3 Methodology 3.1 Components of the Study 4 Results and Discussion 4.1 Results of the Simulation for Varying Ceiling Heights Using DesignBuilder 4.2 Impact of Ceiling Height Variation in Rooms with Changing Orientation 4.3 Impact of Ceiling Height Variation in Rooms with Changing Sizes of Openings 4.4 Rate of Increase in Indoor Temperature with Increase in Ceiling Height 4.5 The Indoor Temperature for All Ceiling Heights Coincided Twice a Day 4.6 Validation of Simulation Results for Varying Ceiling Height 5 Conclusion References Optimization of the Integrated Daylighting and Natural Ventilation in a Commercial Building 1 Introduction 2 Methodology and Materials 3 Study Area 4 Case Study 4.1 Measurement Tools Used 4.2 Measurements and Validation 5 Base Case Modeling 5.1 Design Constants and Variables 5.2 Base Case Design 5.3 Base Case Simulation 5.4 Inputs Used for Optimization 6 Findings and Results 6.1 Optimization 6.2 Scope and Limitations of the Study 7 Conclusion References A Methodology to Optimize Thermal Conditions of Built Forms for Humans and Birds in a Birds Sanctuary 1 Introduction 2 Site Location 3 Methodology 4 Study and Assessment of the Parameters for Ideal Design Values 4.1 Orientation and Form 4.2 Aspect Ratio 4.3 Roof Structure 4.4 Window Wall Ratio 4.5 Perforated Screens 4.6 Shading Devices 5 Conclusions References Applications of Smart Building Materials in Sustainable Architecture 1 Introduction 2 Classification of Smart Materials 2.1 Type 1 2.2 Type 2 3 Application of Smart Materials 4 Chromogenic Materials 5 Suspended Particle Device 6 Polymer Dispersed Liquid Crystals 7 Electrochromic Glass 8 Phase Change Materials (PCM) 9 Shape Memory Alloys 10 Nanotechnology 11 Nanotechnology-Based Thermal Insulation Materials 12 Energy Generation 12.1 Photovoltaics 12.2 Piezoelectric Material 13 Conclusion References An Analytical Assessment and Retrofit Using Nanomaterials of Rural Houses in Heat Wave-Prone Region in India 1 Introduction 2 Materials and Method 2.1 Study Area 2.2 Details of Houses 2.3 Indoor Data Collection 2.4 Simulation and Validation of the Model 3 Results and Findings 3.1 Correlation Between Measured and Simulated Temperature 3.2 Monthly Comfort Hours 3.3 Embodied Energy Analysis 3.4 Thermal Performance 4 Correctives for Enhanced Thermal Performance 4.1 Embodied Energy with Aerogel 5 Conclusion References