دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش:
نویسندگان: Robert N Rodriguez
سری:
ISBN (شابک) : 1635261554, 9781635261554
ناشر: SAS Institute
سال نشر: 2023
تعداد صفحات: 463
[464]
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 18 Mb
در صورت تبدیل فایل کتاب Building Regression Models with SAS: A Guide for Data Scientists به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب ساخت مدلهای رگرسیون با SAS: راهنمای دانشمندان داده نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
مهارت های خود را در ساخت مدل های پیش بینی با SAS ارتقا دهید! ساخت مدلهای رگرسیون با SAS: راهنمای دانشمندان داده به دانشمندان داده، آماردانان و سایر تحلیلگرانی که از SAS برای آموزش مدلهای رگرسیون برای پیشبینی با دادههای بزرگ و پیچیده استفاده میکنند، آموزش میدهد. هر فصل بر روی یک مدل خاص تمرکز دارد و شامل یک نمای کلی در سطح بالا است، به دنبال آن مفاهیم اساسی، نحو ضروری، و مثالهایی با استفاده از رویههای جدید در SAS/STAT و SAS Viya. این کتاب با تأکید بر مثالهای مقدماتی و تفسیر خروجی، درک روشنی از نحوه ساخت انواع مدلهای زیر در اختیار خوانندگان قرار میدهد: مدلهای خطی کلی مدلهای رگرسیون چندک مدلهای رگرسیون لجستیک مدلهای خطی تعمیمیافته مدلهای خطی تعمیمیافته مدلهای افزودنی تعمیمیافته، مدلهای رگرسیون خطرات متناسب، مدلهای رگرسیون درختی، مدلهای مبتنی بر مدل بر روی خطوط رگرسیون تطبیقی چند متغیره ساخت مدلهای رگرسیون با SAS یک راهنمای ضروری برای یادگیری در مورد انواع مدلهایی است که قابلیت تفسیر و همچنین عملکرد پیشبینی را فراهم میکنند.
Advance your skills in building predictive models with SAS! Building Regression Models with SAS: A Guide for Data Scientists teaches data scientists, statisticians, and other analysts who use SAS to train regression models for prediction with large, complex data. Each chapter focuses on a particular model and includes a high-level overview, followed by basic concepts, essential syntax, and examples using new procedures in both SAS/STAT and SAS Viya. By emphasizing introductory examples and interpretation of output, this book provides readers with a clear understanding of how to build the following types of models: general linear models quantile regression models logistic regression models generalized linear models generalized additive models proportional hazards regression models tree models models based on multivariate adaptive regression splines Building Regression Models with SAS is an essential guide to learning about a variety of models that provide interpretability as well as predictive performance.
Contents Motivation for the Book Audiences for the Book Knowledge Prerequisites for the Book Software Prerequisites for the Book What the Book Does Not Cover Acknowledgments Introduction Model Building at the Crossroads of Machine Learning and Statistics Overview of Procedures for Building Regression Models Practical Benefits When Does Interpretability Matter? When Should You Use the Procedures in This Book? How to Read This Book General Linear Models Building General Linear Models: Concepts Example: Predicting Network Activity Essential Aspects of Regression Model Building Notation and Terminology for General Linear Models Parameter Estimation The Bias-Variance Tradeoff for Prediction Model Flexibility and Degrees of Freedom Assessment and Minimization of Prediction Error Summary Building General Linear Models: Issues Problems with Data-Driven Model Selection Example: Simulation of Selection Bias Freedman's Paradox Summary Building General Linear Models: Methods Best-Subset Regression Sequential Selection Methods Shrinkage Methods Summary Building General Linear Models: Procedures Introduction to the GLMSELECT Procedure Specifying the Candidate Effects and the Selection Method Controlling the Selection Method Which Selection Methods and Criteria Should You Use? Comparing Selection Criteria Forced Inclusion of Model Effects Example: Predicting the Close Rate of Retail Stores Example: Building a Model with Forward Selection Example: Building a Model with the Lasso and SBC Example: Building a Model with the Lasso and Cross Validation Example: Building a Model with the Lasso and Validation Data Example: Building a Model with the Adaptive Lasso Example: Building a Model with the Group Lasso Using the REG Procedure for Best-Subset Regression Example: Finding the Best Model for Close Rate Example: Best-Subset Regression with Categorical Predictors Introduction to the REGSELECT Procedure Example: Defining a CAS Session and Loading Data Example: Differences from the GLMSELECT Procedure Example: Building a Model with Forward Swap Selection Using the Final Model to Score New Data Summary Building General Linear Models: Collinearity Example: Modeling the Effect of Air Pollution on Mortality Detecting Collinearity Dimension Reduction Using Variable Clustering Ridge Regression The Elastic Net Method Principal Components Regression Partial Least Squares Regression Conclusions for Air Pollution Example Summary Building General Linear Models: Model Averaging Approaches to Model Averaging Using the GLMSELECT Procedure for Model Averaging Bootstrap Model Averaging with Stepwise Regression Refitting to Build a Parsimonious Model Model Averaging with Akaike Weights Summary Specialized Regression Models Building Quantile Regression Models What Is a Quantile? How Does Quantile Regression Compare With Ordinary Least Squares Regression? Fitting Fully Specified Quantile Regression Models Example: Predicting Quantiles for Customer Lifetime Value Example: Fitting a Quantile Process Model for Customer Lifetime Value Introduction to the QUANTSELECT Procedure Example: Building Quantile Regression Models for Close Rate Example: Building a Quantile Process Model for Close Rate Example: Ranking Store Performance with Conditional Distributions Introduction to the QTRSELECT Procedure Example: Building Quantile Regression Models for Close Rate Summary Building Logistic Regression Models Comparison of Procedures for Logistic Regression Basic Concepts of Binary Logistic Regression Introduction to the HPLOGISTIC Procedure Introduction to the LOGSELECT Procedure Summary of Procedure Features Building Generalized Linear Models Procedures for Generalized Linear Models Basic Concepts of Generalized Linear Models Introduction to the HPGENSELECT Procedure Introduction to the GENSELECT Procedure Summary of Procedure Features Building Generalized Additive Models Procedures for Generalized Additive Models Components of Generalized Additive Models Introduction to the GAMPL Procedure Introduction to the GAMMOD Procedure Introduction to the GAMSELECT Procedure Summary Building Proportional Hazards Models Concepts of Proportional Hazards Models Introduction to the PHSELECT Procedure Model Building with Discrete Time Summary Building Classification and Regression Trees Introduction to the HPSPLIT Procedure Introduction to the TREESPLIT Procedure Summary Building Adaptive Regression Models Introduction to the ADAPTIVEREG Procedure Summary Appendices about Algorithms and Computational Methods Algorithms for Least Squares Estimation The QR Decomposition The Singular Value Decomposition The Sweep Algorithm The Gram-Schmidt Procedure Orthogonalization in Univariate Regression without an Intercept Orthogonalization in Univariate Regression with an Intercept Orthogonalization in Multiple Regression Least Squares Geometry Orthogonality of Predictions and Residuals The Hat Matrix as a Projection Matrix Akaike's Information Criterion Forms of Akaike's Criterion Motivation for Akaike's Criterion Maximum Likelihood Estimation for Generalized Linear Models Computational Algorithms Existence of Maximum Likelihood Estimates Approximate Computation of Information Criteria Distributions for Generalized Linear Models The Exponential Family Continuous Distributions in the Exponential Family Discrete Distributions in the Exponential Family Distributions Outside of the Exponential Family Spline Methods Basic Terminology The Knot Selection Problem Types of Splines Spline Functionality in Procedures Algorithms for Generalized Additive Models Additive Models The Backfitting Algorithm for Additive Models Local Scoring for Generalized Additive Models The IWLS Algorithm for Generalized Linear Models The Local Scoring Algorithm for Generalized Additive Models Penalized Likelihood for Generalized Additive Models Algorithms for Penalized Likelihood Estimation Model Evaluation Criteria Searching for the Optimal Effective Degrees of Freedom Methods for Selecting Generalized Additive Models The Boosting Method The Shrinkage Method Appendices about Common Topics Methods for Scoring Data Types of Scoring Methods Internal Scoring Methods External Scoring Methods Summary Coding Schemes for Categorical Predictors Why Does Parameterization Matter? Specifying the Parameterization and Level Order Specifying Effect Splitting Useful Parameterizations GLM Parameterization Effect Parameterization Reference Parameterization Other Parameterizations Summary Essentials of ODS Graphics Managing the Display of Graphs and Tables Creating SAS Data Sets from Graphs and Tables Accessing Individual Graphs Specifying the Size and Resolution of Graphs Specifying the Style of Graphs and Tables Distinguishing Groups in Graphs Modifying Graphs by Editing Graph Templates Creating Graphs by Writing Graph Templates Creating Graphs with Statistical Graphics Procedures Modifying a Procedure Graph Example: Enhancing a Contour Plot Capturing the Data in the Procedure Plot Determining the Template Name Accessing and Displaying the Template Modifying the Template Code Creating an Annotation Data Set with City Information Summary Marginal Model Plots Example: Claim Rates for Mortgages The %Marginal Macro Glossary References Subject Index Syntax Index Blank Page