دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 1 نویسندگان: Huiming Yin, Mehdi Zadshir, Frank Pao سری: ISBN (شابک) : 0128210648, 9780128210642 ناشر: Academic Press سال نشر: 2021 تعداد صفحات: 601 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 146 مگابایت
در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد
در صورت تبدیل فایل کتاب Building Integrated Photovoltaic Thermal Systems: Fundamentals, Designs and Applications به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب سیستم های حرارتی فتوولتائیک یکپارچه ساختمان: مبانی، طرح ها و کاربردها نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
IFC Half title Title Copyright Contents Preface Acknowledgements Dedication Chapter 1 Introduction 1.1 Background 1.2 Solar energy harvesting methods 1.2.1 Photovoltaic utilization 1.2.2 Thermoelectric utilization 1.2.3 Heat harvesting 1.2.4 Hybrid solar panels 1.3 Challenges and opportunities of solar panels 1.4 Building integrated photovoltaic and building integrated photovoltaic thermal systems 1.5 Solar energy industry in the United States and the world 1.6 Scope of this book 1.7 Two building integrated photovoltaic thermal systems 1.7.1 Building an integrated thermal electric roofing system 1.7.2 Building integrated photovoltaic thermal solar roof 1.8 Case study: Active Energy Building 1.8.1 Building innovation for architecture in motion 1.8.2 Structure design and optimization 1.8.3 Voronoi load-bearing structure 1.8.4 Energy design 1.8.5 Improvement and optimization of passive solar gains 1.8.6 Active solar energy utilization 1.8.7 Building integrated photovoltaic–tracker 1.8.8 Phase change materials climate wings 1.8.9 Textile building envelope References Chapter 2 Fundamentals of BIPVT design and integration 2.1 Physics of photovoltaics 2.1.1 Photovoltaic materials 2.1.2 Silicon solar cells 2.1.3 The efficiency of a photovoltaic cell 2.2 Heat and mass transfer in BIPVT panels 2.2.1 The first law of thermodynamics and steady flow 2.2.2 Heat transfer in a BIPVT panel 2.2.3 Thermal radiation 2.2.4 Heat convection 2.2.5 Heat conduction 2.2.6 The second law of thermodynamics and heat pump 2.3 Energy dynamics and modeling of BIPVT systems 2.3.1 Electric modeling of BIPVT systems 2.3.2 Thermal modeling of BIPVT systems 2.3.3 Water pump design of BIPVT system 2.3.4 Stress and deflection analysis of BIPVT panels 2.4 Life cycle analysis of BIPVT systems 2.4.1 Economic metrics 2.4.2 LCA functional unit 2.4.3 Boundary definition 2.4.4 LCA performance of BIVPT systems 2.5 Case study: Development of a BIPVT panel with a foamed aluminum substrate 2.5.1 Concept and design outline 2.5.2 Modeling and simulation 2.5.3 Governing equations 2.5.4 Fluid–solid interface cosimulation 2.5.5 Simulation geometry and material properties 2.5.6 Boundary conditions 2.5.7 Steady–state thermal solution results 2.5.8 Parametric study of the thermal conductance of interfaces 2.5.9 Parametric study of the thermal conductivity 2.5.10 Experiments 2.5.11 Results and discussion 2.5.12 Conclusions References Chapter 3 Solar cell manufacture and module packaging 3.1 Introduction 3.2 Silicon refining process 3.2.1 The Siemens process vs Schmid process 3.2.2 Sawing ingots to wafers 3.3 Silicon solar cell production 3.3.1 Silicon cell production procedure 3.3.2 Screen printing process 3.3.3 Back contact cells 3.4 Latest silicon cell technology and the advancements 3.5 Solar module production 3.5.1 Interconnection materials 3.5.2 Solar cell tabbing and stringing 3.5.3 Module encapsulant 3.5.4 Ethylene-vinyl acetate (EVA) 3.5.5 Polyvinyl butyral (PVB) 3.5.6 Thermoplastic silicone elastomer 3.5.7 Thermoplastic polyolefin elastomer 3.5.8 Ionomers 3.5.9 Backsheet 3.6 The hybrid lamination technology 3.7 Quality control and assurance 3.8 Vision and challenges toward future circular manufacture 3.9 Case study 1: The Water and Life Museums, Hemet, California 3.10 Case study 2: Metlife Solar Ring 3.10.1 Module electrical characteristics 3.10.2 Electrical installation 3.10.3 Series connections 3.10.4 String sizing 3.10.5 Grounding 3.10.6 Mechanical installation 3.10.7 Maintenance 3.10.8 System structure References Chapter 4 Production and acceptance of BIPV panels 4.1 Introduction 4.2 Material preparation and quality control 4.2.1 Inspection and acceptance of the incoming goods 4.2.2 Encapsulant preparation 4.2.3 Backsheet (backing foil) preparation 4.2.4 Covers and insulators 4.2.5 Ribbon connection preparation 4.3 Soldering of solar cells 4.3.1 Front tabbing 4.3.2 Visual check of the soldering joints and cell surface cleanliness 4.3.3 Peel test 4.3.4 Soldering string 4.3.5 String soldering: quality control 4.3.6 Equipment, devices, and tools 4.4 Laying up of glass/foil laminates 4.5 Lamination of glass/foil laminates 4.6 Assembly of modules 4.7 Junction boxes assembly 4.8 Quality control standards 4.9 Determining the gel content of the encapsulant (EVA) 4.9.1 Purpose 4.9.2 Safety precautions 4.9.3 Principle 4.10 BIPVT products 4.10.1 Sunslate 4.10.2 TallSlate 4.11 Building-integrated photovoltaic projects on building envelopes 4.11.1 Building-integrated photovoltaic glass projects 4.11.2 Sunslate installations 4.11.3 TallSlate installations 4.12 Case study: Natomas parking lot Chapter 5 Design, development, and applications of BIPVT systems 5.1 Introduction 5.2 Building integrated thermal electric roofing system 5.2.1 Components and functions of Sunslate building integrated thermal electric roofing system 5.2.2 Operation of the Sunslate building integrated thermal electric roofing system 5.3 Installation projects of the Sunslate building integrated thermal electric roofing system 5.3.1 Sullivan estate project—aesthetical roof in a resort 5.3.2 Virginia project–building integrated thermal electric roofing system and skylight on a residential home 5.3.3 The future house USA project 5.4 Development of the TallSlate building integrated thermal electric roofing system 5.5 Recent development and products of building integrated thermal electric roofing system 5.6 Design and development of building integrated thermal electric roofing system 5.6.1 Early building integrated thermal electric roofing system prototype 5.6.2 A novel manufacturing method 5.6.3 Modernized experimental facility 5.6.4 Improved building integrated thermal electric roofing system technologies 5.7 Building integrated thermal electric roofing system applications to energy independent buildings 5.7.1 From zero energy to energy independency 5.7.2 Microgrid and energy storage for building integrated thermal electric roofing system applications 5.8 BIPVT design and demonstration at the Cherokee home 5.9 Case study 1: Turn an old house into the Beauty at the Beach 5.10 Case study 2: Dover building integrated thermal electric roofing system installation References Chapter 6 BIPVT coupling with geothermal systems 6.1 Introduction 6.2 Geothermal well design and characterization 6.2.1 Geothermal well construction 6.2.2 Ground temperature profile 6.3 Geothermal well systems 6.3.1 Design procedure of bidirectional geothermal wells 6.3.2 Heat and mass flow in a bidirectional geothermal system and the energy efficiency 6.3.3 Heat transfer in the system 6.3.4 Thermal fluid circulation in the system 6.3.5 Energy consumption and coefficient of performance of the system 6.4 A novel passive bidirectional BIPVT-geothermal system 6.4.1 The passive BIPVT-geothermal system design 6.4.2 Technology innovations and merits 6.4.3 Technical and economic feasibility 6.4.4 Energy consumption and efficiency analysis 6.5 Case study 1: A net–zero energy house at Wisconsin 6.6 Case study 2: BIPV curtain wall building References Chapter 7 BIPVT coupling with wind and wave energy 7.1 Introduction 7.2 Fundamentals of wind energy harvesting 7.3 Fundamentals of wave energy harvesting 7.4 Design of a PV–wind–wave coupled system 7.4.1 Overview of the structural design and construction 7.4.2 BIPVT design and maintenance 7.4.3 Freshwater generation 7.4.4 Power generation and management 7.5 Remarks for prospective development and applications 7.6 Case study: Wavehouse References Chapter 8 BIPVT applications in transportation 8.1 Introduction 8.2 Early personal rapid transit systems 8.2.1 UK: Cabtrack 8.2.2 Japan: Computer-controlled vehicle system 8.2.3 Germany: Cabinentaxi 8.2.4 France: Aramis 8.2.5 Sweden: Gothenburg 8.2.6 United States: Morgantown personal rapid transit 8.3 Integration and operation of the Morgantown personal rapid transit 8.3.1 System operation 8.3.2 Personal rapid transit operation and communications 8.3.3 The station vehicle management system 8.3.4 Vehicle guideway operations 8.3.5 Passenger and personnel safety 8.4 Challenges and opportunities 8.5 BIPVT for sun powered personal rapid transit 8.5.1 Motivation and design philosophy 8.5.2 The sun tunnel of solar canopy 8.5.3 Personal rapid transit system operation 8.5.4 The sensing and control system 8.5.5 Energy storage and operation system 8.5.6 The layout of the station operation 8.6 Perspectives of BIPVT in transportation 8.7 Case Study: Personal Rapid Transit (PRT) 8.7.1 Overview 8.7.2 Intra Dwarka Trips PRT Project 8.7.3 Rotterdam PRT Project 8.8 Remarks for future development and applications References Chapter 9 BIPVT applications in farms 9.1 Introduction 9.2 Solar powered greenhouse 9.2.1 Background 9.2.2 Solar greenhouse design 9.2.3 Building-integrated photovoltaic thermal panels 9.2.4 Sensing and control of fluid circulation system 9.2.5 Geothermal heat well system 9.2.6 Energy storage integrated in farm\'s microwater cycle 9.3 Nexus of food-energy-water system 9.4 Future 3D farming 9.5 Case study 1: Thermal and lighting management by BIPV at University of British Columbia 9.6 Case study 2: A greenhouse project at Como Park 9.6.1 Introduction of the greenhouse modules 9.7 Remarks for prospective development and applications References Chapter 10 Perspectives of the current, emerging, and future BIPVT technologies 10.1 Introduction 10.2 Current BIPV/BIPVT market and future opportunities 10.3 Emerging thermal management technologies for BIPVT systems 10.3.1 Background 10.3.2 BIPVT integrated with phase change materials 10.3.3 Bifacial BIPVT panel 10.3.4 Transparent or translucent BIPVT panel 10.4 Smart building with BIPV components 10.4.1 Background 10.4.2 Solar tracking and active buildings 10.4.3 Self–powered sensing and control 10.4.4 Smart building skin 10.5 Circular eco-manufacturing of BIPVT panels 10.5.1 Background 10.5.2 Solar panel recycling 10.5.3 Solar panel laminating method for easy delamination 10.5.4 Modular design and construction of the BIPVT building envelope 10.6 Case study 1: Austin Sunflower 10.6.1 The photovoltaic modules 10.6.2 Junction box and module interconnection 10.7 Case Study 2: Modular manufacture and construction References Index IBC