دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش:
نویسندگان: Dan Meador
سری:
ISBN (شابک) : 1800568789, 9781800568785
ناشر: Packt Publishing
سال نشر: 2022
تعداد صفحات: 330
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 8 Mb
در صورت تبدیل فایل کتاب Building Data Science Solutions with Anaconda: A comprehensive starter guide to building robust and complete models به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب راه حل های علوم داده ساختمان با آناکوندا: راهنمای جامع شروع برای ساخت مدل های قوی و کامل نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
دستورالعمل گمشده برای تبدیل شدن به یک دانشمند داده موفق — مهارتهای استفاده از ابزارهای کلیدی و دانش را برای پیشرفت در چشمانداز AI/ML توسعه دهید
شاید قبلاً میدانید که منابع زیادی از علم داده و یادگیری ماشین در بازار موجود است، اما چیزی که ممکن است ندانید این است که بسیاری از این منابع هوش مصنوعی چه مقدار از آنها را حذف کردهاند. این کتاب نه تنها همه چیزهایی را که باید در مورد خانواده الگوریتمها بدانید را پوشش میدهد، بلکه تضمین میکند که در همه چیز متخصص شوید، از جنبههای مهم اجتناب از سوگیری در دادهها تا تفسیرپذیری مدل، که اکنون به مهارتهای ضروری تبدیل شدهاند.
در این کتاب، شما یاد خواهید گرفت که چگونه با استفاده از آناکوندا به عنوان دکمه آسان، می توانید دید کاملی از قابلیت های ابزارهایی مانند conda به شما ارائه دهد، که شامل نحوه تعیین کانال های جدید برای کشیدن می شود. در هر بسته ای که می خواهید و همچنین کشف ابزارهای منبع باز جدید در اختیار شما. همچنین تصویر واضحی از نحوه ارزیابی مدل هایی که باید آموزش دهید و زمانی که به دلیل رانش غیرقابل استفاده شده اند را شناسایی کنید. در نهایت، با تکنیکهای قدرتمند و در عین حال سادهای آشنا میشوید که میتوانید از آنها برای توضیح نحوه عملکرد مدل خود استفاده کنید.
در پایان این کتاب، با استفاده از آن احساس اطمینان خواهید کرد. conda و Anaconda Navigator برای مدیریت وابستگی ها و به دست آوردن درک کامل از گردش کار علم داده سرتاسر.
اگر شما یک تحلیلگر داده یا حرفه ای در علم داده هستید که می خواهید از قابلیت های Anaconda نهایت استفاده را ببرید و درک خود را از جریان های کاری علم داده عمیق تر کنید، این کتاب برای شما مناسب است. شما نیازی به تجربه قبلی با Anaconda ندارید، اما دانش کاری پایتون و مبانی علم داده ضروری است.
The missing manual to becoming a successful data scientist―develop the skills to use key tools and the knowledge to thrive in the AI/ML landscape
You might already know that there's a wealth of data science and machine learning resources available on the market, but what you might not know is how much is left out by most of these AI resources. This book not only covers everything you need to know about algorithm families but also ensures that you become an expert in everything, from the critical aspects of avoiding bias in data to model interpretability, which have now become must-have skills.
In this book, you'll learn how using Anaconda as the easy button, can give you a complete view of the capabilities of tools such as conda, which includes how to specify new channels to pull in any package you want as well as discovering new open source tools at your disposal. You'll also get a clear picture of how to evaluate which model to train and identify when they have become unusable due to drift. Finally, you'll learn about the powerful yet simple techniques that you can use to explain how your model works.
By the end of this book, you'll feel confident using conda and Anaconda Navigator to manage dependencies and gain a thorough understanding of the end-to-end data science workflow.
If you're a data analyst or data science professional looking to make the most of Anaconda's capabilities and deepen your understanding of data science workflows, then this book is for you. You don't need any prior experience with Anaconda, but a working knowledge of Python and data science basics is a must.
Cover Title page Copyright and Credits Foreword Contributors Table of Contents Preface Part 1: The Data Science Landscape – Open Source to the Rescue Chapter 1: Understanding the AI/ML landscape Introducing Artificial Intelligence (AI) Defining AI Defining a data scientist Understanding the current state of AI and ML Knowing the difference between AI and ML Understanding the massive generation of new data Evaluating how AI delivers business value Understanding the main types of ML models Supervised learning Unsupervised learning Reinforcement learning Evaluating the problem type Dealing with out-of-date models Difference between online and batch learning How models become stale: model drift Installing packages with Anaconda How to use Anaconda Individual Edition to download packages How to handle dependencies with conda Creating separate work areas with Anaconda environments Summary Chapter 2: Analyzing Open Source Software Technical requirements Understanding open source Forking an OSS repository with Git and GitHub Defining open source software Advantages of OSS Understanding the top four OSS licenses Copyleft versus permissive licenses How to find out what license a library uses Evaluating a new tool or library GitHub stars Age How long since it's been updated Number of maintainers Age of open issues/PRs Number of external dependencies Importing packages with Anaconda and conda-forge Updating to the latest conda version Creating a conda virtual environment The differences between modules, packages, and libraries Evaluating and using scikit-learn Evaluation metrics Getting up and running with scikit-learn Summary Chapter 3: Using the Anaconda Distribution to Manage Packages Technical requirements Learning how dependency resolution works How pip and conda are different Discovering what conda environments are and how to use them Creating environments in conda Creating environments in Navigator Installing packages via Navigator Installing packages via conda Exporting environments to Anconda.org Managing channels with Anaconda Navigator and conda Understanding what a channel is Setting channel priority Using advanced conda info and settings Using conda info to see configuration information Setting up your conda settings file Conda cheat sheet Conda general commands Conda environment commands Summary Chapter 4: Working with Jupyter Notebooks and NumPy Technical requirements Working with Jupyter notebooks Creating a new Jupyter notebook Working with Jupyter notebook cells Line and cell magic in Jupyter cells Accessing the system command line Using NumPy to perform calculations quickly Creating and manipulating NumPy arrays Understanding why NumPy's ndarrays are fast Summary Part 2: Data Is the New Oil, Models Are the New Refineries Chapter 5: Cleaning and Visualizing Data Technical requirements Cleaning data with pandas Installing pandas in your conda environment Working with CSVs Analyzing and cleaning data Dealing with missing data Creating a deep copy of a Data Frame Visualization with Matplotlib Preparing data for plotting Plotting data Customizing the plot Showing the plot Plotting a scatter plot and polynomial regression line Summary Chapter 6: Overcoming Bias in AI/ML Technical requirements Defining bias versus discrimination Bias in AI/ML Discrimination in AI/ML Overcoming proxy bias Examples of proxy bias How to prevent proxy bias Overcoming sample bias Examples of sample bias Racial/gender bias How to prevent sample bias Overcoming exclusion bias Examples of exclusion bias How to prevent exclusion bias Overcoming measurement bias Examples of measurement bias How to prevent measurement bias Overcoming societal AI bias Examples of societal bias Finding bias in an example Summary Chapter 7: Choosing the Best AI Algorithm Technical requirements Defining your problem Model problem types Algorithms by problem type Understanding regression problems with examples Linear regression Random forest Support vector machines Artificial neural networks Classification Classification algorithms Classification example Logistic regression Decision trees/random forest K-nearest neighbors Anomaly detection One-class SVM Isolation forests Clustering problems DBScan K-means clustering Summary Chapter 8: Dealing with Common Data Problems Technical requirements Dealing with too much data Checking feature correlation Detecting NaN values Dealing with valid NaN values Dealing with invalid NaN values Finding and correcting data entries Retrieving specific pandas items by condition Working with categorical values with one-hot encoding One-hot encoding with pandas Ordinal encoding Feature scaling Creating a histogram with pandas Using the R2 score to evaluate a model Using the MSE score to evaluate a model Using the MAE score to evaluate a model Overcoming the limits of capped values Recovering the raw dataset Working with date formats Summary Part 3: Practical Examples and Applications Chapter 9: Building a Regression Model with scikit-learn Technical requirements Walking through the data science workflow Setting up and understanding the problem space Setting up your workspace Combining two CSV files Exploring and cleaning the data Checking for missing values Checking for redundant features Focusing on the key features Creating and evaluating regression algorithms Comparing regression and classification Preparing the data for training Evaluating potential models using MSE and R2 scores Training your models Analyzing model results with MSE and R2 score R2 score Training a KNN model Linear regression Making use of our results Summary Chapter 10: Explainable AI - Using LIME and SHAP Technical requirements Understanding the value of interpretation Knowing the difference between interpreting and explaining Looking at legal reasons for interpretability Looking at moral reasons for interpretability Looking at business reasons for interpretability Looking at model improvement reasons for interpretability Understanding models that are interpretable by design Interpreting decision trees Graphing a decision tree Explaining a model's outcome with LIME Creating a LIME example Weighing the drawbacks of LIME Explaining a model's outcome with SHAP Avoid confusion with Shapley values Creating a SHAP example Looking at the SHAP result Weighing the drawbacks of SHAP Thinking through shortcomings of interpretation and XAI Summary Chapter 11: Tuning Hyperparameters and Versioning Your Model Technical requirements Creating a scikit-learn pipeline scikit-learn estimators and transformers Creating a scikit-learn pipeline Testing out various algorithm methods Feeding live production data into pipelines Finding optimal hyperparameters with GridSearchCV Defining the difference between hyperparameters and parameters Using a grid search on a random forest pipeline Versioning and storing your model Pickling a model Loading your pickled model Storing your model with joblib Summary Close Index Other Books You May Enjoy