دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: [3 ed.] نویسندگان: Raj P. Chhabra, Swati A. Patel سری: Chemical Industries ISBN (شابک) : 0367203022, 9780367203023 ناشر: CRC Press سال نشر: 2023 تعداد صفحات: 732 [733] زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 206 Mb
در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد
در صورت تبدیل فایل کتاب Bubbles, Drops, and Particles in Non-Newtonian Fluids به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب حباب ها، قطرات و ذرات در سیالات غیر نیوتنی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Cover Half Title Series Page Title Page Copyright Page Table of Contents Preface to the Third Edition Preface to the Second Edition Preface to the First Edition Acknowledgments Authors Introduction 1. Non-Newtonian Fluid Behavior 1.1 Introduction 1.2 Definition of a Newtonian Fluid 1.3 Non-Newtonian Fluids 1.3.1 Time-Independent Fluid Behavior 1.3.1.1 Shear-Thinning or Pseudoplastic Fluids 1.3.1.2 Visco-Plastic Fluids 1.3.1.3 Shear-Thickening Fluids 1.3.2 Time-Dependent Behavior 1.3.2.1 Thixotropy 1.3.2.2 Rheopexy or Negative Thixotropy 1.3.3 Visco-Elastic Behavior 1.3.3.1 Normal-Stress Effects in Steady Shearing Flows 1.3.3.2 Elongational Flow 1.3.3.3 Small-Amplitude Oscillatory Shearing Motion 1.3.3.4 Mathematical Models for Visco-Elastic Behavior 1.4 Dimensional Considerations in the Fluid Mechanics of Visco-Elastic Fluids 1.5 Experimental Techniques: Rheometry 1.6 Concluding Remarks Nomenclature Greek Symbols Subscripts Superscripts 2. Rigid Particles in Time-Independent Liquids Without a Yield Stress 2.1 Introduction 2.2 Governing Equations for a Sphere 2.3 Spherical Particles in Newtonian Fluids 2.3.1 Drag Force 2.3.2 Free-Fall Velocity 2.3.3 Flow Regimes 2.3.4 Unsteady Motion 2.4 Spheres in Shear-Thinning Liquids 2.4.1 Drag Force 2.4.1.1 Theoretical Developments in Creeping Flow Region 2.4.1.2 Experimental Results 2.4.1.3 Drag Force at High Reynolds Numbers 2.4.2 Free-Fall Velocity 2.4.3 Flow Field and Flow Regimes 2.4.4 Unsteady Motion 2.4.5 Effect of Imposed Fluid Motion 2.5 Spheres in Shear-Thickening Liquids 2.6 Drag on Light Spheres Rising in Pseudoplastic Media 2.7 Pressure Drop Due to a Settling Sphere 2.8 Nonspherical Particles 2.8.1 Introduction 2.8.2 Drag Force 2.8.2.1 Newtonian Fluids 2.8.2.2 Shear-Thinning Liquids 2.9 Conclusions Nomenclature Greek Symbols Superscript 3. Rigid Particles in Visco-Plastic Liquids 3.1 Introduction 3.2 Spheres in Visco-Plastic Liquids 3.2.1 Static Equilibrium 3.2.2 Flow Field 3.2.3 Drag Force 3.2.3.1 Theoretical Developments 3.2.3.2 Experimental Drag Correlations 3.2.4 Values of Yield Stress Used in Correlations 3.2.5 Time Dependence of Velocity in Visco-Plastic Fluids 3.3 Flow Past a Circular Cylinder 3.4 Flow Normal to a Plate 3.5 Nonspherical Particles 3.6 Conclusions Nomenclature Greek Symbols Subscripts 4. Rigid Particles in Visco-Elastic Fluids 4.1 Introduction 4.2 Flow Over a Sphere 4.2.1 Theoretical Developments 4.2.1.1 Drag Force on an Unbounded (β = 0) Sphere in Creeping Region (Re → 0) 4.2.1.2 Drag Force on a Sphere for β = 0.5 and Re → 0: The Benchmark Problem 4.2.1.3 Wake Phenomenon 4.2.2 Experimental Results 4.2.2.1 Shear-Thinning Visco-Elastic Liquids 4.2.2.2 Nonshear-Thinning Visco-Elastic Liquids (Boger Fluids) 4.2.3 The Time Effect 4.2.4 Velocity Overshoot 4.2.5 Drag-Reducing Fluids 4.2.6 Sphere in Mixed Flows 4.3 Flow Over a Long Circular Cylinder 4.4 Interaction Between Visco-Elasticity, Particle Shape, Multiple Particles, Confining Boundaries, and Imposed Fluid Motion 4.5 Conclusions Nomenclature Greek Symbols 5. Fluid Particles in Non-Newtonian Media 5.1 Introduction 5.2 Formation of Fluid Particles 5.2.1 Bubbles 5.2.1.1 Davidson–Schuler Model 5.2.1.2 Kumar–Kuloor Model 5.2.2 Drops 5.2.2.1 Criterion I: Low-Viscosity Systems 5.2.2.2 Criterion II: High-Viscosity Systems 5.2.3 Disintegration (or Breakup) of Jets and Sheets 5.2.4 Growth or Collapse of Bubbles 5.3 Shapes of Bubbles and Drops in Free Rise or Fall 5.3.1 Newtonian Continuous Media 5.3.2 Non-Newtonian Continuous Media 5.4 Terminal Velocity–Volume Behavior in Free Motion 5.5 Drag Behavior of Single Particles 5.5.1 Theoretical Developments 5.5.1.1 Newtonian Continuous Phase 5.5.1.2 Shear-Thinning Continuous Phase 5.5.1.3 Visco-Elastic Continuous Phase 5.5.1.4 Non-Newtonian Drops 5.5.2 Experimental Results 5.6 Bubble and Drop Ensembles in Free Motion 5.7 Coalescence of Bubbles and Drops 5.7.1 Bubble Coalescence 5.7.2 Drop Coalescence 5.8 Breakage of Drops 5.9 Motion and Deformation of Bubbles and Drops in Confined Flows 5.10 Conclusions Nomenclature Greek Symbols Subscripts 6. Non-Newtonian Fluid Flow in Porous Media and Packed Beds 6.1 Introduction 6.2 Porous Medium 6.2.1 Definition of a Porous Medium, its Classification, and Examples 6.2.2 Description of a Porous Medium 6.3 Newtonian Liquids 6.3.1 Flow Regimes 6.3.2 Pressure Loss–Throughput Relationship 6.3.2.1 Dimensionless Empirical Correlations 6.3.2.2 The Conduit or Capillary Models 6.3.2.3 The Submerged Objects Models or Drag Theories 6.3.2.4 Use of the Field Equations for Flow Through a Porous Medium 6.3.2.5 Flow in Periodically Constricted Tubes (PCTs) 6.3.2.6 Volume Averaging of the Navier–Stokes Equations 6.3.3 Wall Effects 6.3.4 Effects of Particle Shape, Particle Roughness, and Size Distribution 6.3.5 Fibrous Porous Media 6.3.6 Theoretical Treatments 6.3.6.1 Flow Parallel to an Array of Rods 6.3.6.2 Transverse Flow Over an Array of Rods 6.3.6.3 Creeping Flow Region 6.3.6.4 Inertial Effects 6.4 Non-Newtonian Fluids 6.4.1 Flow Regimes 6.4.2 Pressure Loss for Generalized Newtonian Fluids 6.4.2.1 The Capillary Model 6.4.2.2 Submerged Object Models or Drag Theories 6.4.2.3 Volume Averaging of Equations 6.4.2.4 Other Methods 6.4.3 Visco-Elastic Effects in Porous Media 6.4.4 Dilute/Semidilute Drag Reducing Polymer Solutions 6.4.5 Wall Effects 6.4.6 Effect of Particle Shape and Size Distribution 6.4.7 Flow in Fibrous Media 6.4.7.1 Generalized Newtonian Fluids 6.4.7.2 Visco-Elastic Fluids 6.4.8 Mixing in Packed Beds 6.5 Miscellaneous Effects 6.5.1 Polymer Retention in Porous Media 6.5.2 Slip Effects 6.5.3 Flow-Induced Mechanical Degradation of Flexible Molecules in Solutions 6.6 Two-Phase Gas/Liquid Flow 6.7 Conclusions Nomenclature Greek Symbols Subscripts Superscript 7. Fluidization and Hindered Settling 7.1 Introduction 7.2 Two-Phase Fluidization 7.2.1 Minimum Fluidization Velocity 7.2.1.1 Definition 7.2.1.2 Prediction of V[sub(mf)] 7.2.1.3 Non-Newtonian Systems 7.2.2 Bed Expansion Behavior 7.2.2.1 Inelastic Non-Newtonian Systems 7.2.3 Effect of Visco-Elasticity 7.3 Three-Phase Fluidized Beds 7.3.1 Introduction 7.3.2 Minimum Fluidization Velocity 7.3.3 Bed Expansion Behavior 7.3.4 Gas Holdup 7.4 Sedimentation or Hindered Settling 7.4.1 Non-Newtonian Studies 7.5 Conclusions Nomenclature Greek Symbols Subscripts 8. Heat and Mass Transfer in Particulate Systems: Forced Convection 8.1 Introduction 8.2 Boundary Layer Flows 8.2.1 Plates 8.2.2 Cylinders 8.2.3 Spheres 8.3 Visco-Elastic Effects in Boundary Layers 8.4 Bubbles 8.4.1 Large Peclet Number (Pe >> 1) 8.4.2 Small Peclet Number (Pe <<1) 8.5 Drops 8.6 Ensemble of Bubbles and Drops 8.7 Fixed Beds 8.8 Liquid–Solid Fluidized Beds 8.9 Three-Phase Fluidized Bed Systems 8.10 Heat Transfer From Tube Bundles 8.11 Conclusions Nomenclature Greek Symbols Subscripts 9. Heat and Mass Transfer in Particulate Systems: Free and Mixed Convection 9.1 Introduction 9.2 Governing Equations 9.3 Vertical Plate 9.3.1 Free Convection 9.3.1.1 Newtonian Fluids 9.3.1.2 Power-Law Fluids 9.3.1.3 Bingham Plastic Fluids 9.3.2 Mixed Convection 9.3.2.1 Newtonian Fluids 9.3.2.2 Power-law Fluids 9.3.2.3 Visco-plastic Fluids 9.4 Horizontal Cylinders 9.4.1 Free Convection 9.4.1.1 Newtonian Fluids 9.4.1.2 Power-Law Fluids 9.4.1.3 Bingham Plastic Fluids 9.4.2 Mixed Convection 9.4.2.1 Newtonian Fluids 9.4.2.2 Power-Law Fluids 9.4.2.3 Bingham Plastic Fluids 9.5 Spheres 9.5.1 Free Convection 9.5.1.1 Newtonian Fluids 9.5.1.2 Power-Law Fluids 9.5.1.3 Bingham Plastic Fluids 9.5.2 Mixed Convection 9.5.2.1 Newtonian Fluids 9.5.2.2 Power-Law Fluids 9.5.2.3 Bingham Plastic Fluids 9.6 Visco-Elastic Effects in Boundary Layers 9.7 Conclusions Nomenclature Greek Symbols Subscripts 10. Wall Effects 10.1 Introduction 10.2 Definition 10.3 Rigid Spheres 10.3.1 Newtonian Fluids 10.3.1.1 Theoretical Treatments 10.3.1.2 Experimental Results and Correlations 10.3.2 Inelastic Non-Newtonian Liquids 10.3.2.1 Theoretical and Numerical Treatments 10.3.2.2 Experimental Studies 10.3.3 Visco-plastic Liquids 10.3.4 Visco-Elastic Liquids 10.3.4.1 Boger Fluids 10.4 Nonspherical Rigid Particles 10.4.1 Newtonian Liquids 10.4.2 Inelastic Non-Newtonian Liquids 10.5 Effect of Blockage on Heat Transfer From a Sphere 10.6 Drops and Bubbles 10.6.1 Newtonian Continuous Phase 10.6.1.1 Low Reynolds Number Regime 10.6.1.2 High Reynolds Number Regime 10.6.2 Non-Newtonian Continuous Phase 10.7 Conclusions Nomenclature Greek Symbols Subscripts 11. Falling Object Rheometry 11.1 Introduction 11.2 Falling Ball Method 11.2.1 Newtonian Fluids 11.2.2 Non-Newtonian Fluids 11.2.2.1 Zero-Shear Viscosity 11.2.2.2 Shear-Dependent Viscosity 11.2.2.3 Yield Stress 11.2.2.4 Characteristic Time for Visco-Elastic Fluids 11.3 Rolling Ball Method 11.3.1 Newtonian Fluids 11.3.2 Non-Newtonian Fluids (Shear-Dependent Viscosity) 11.3.3 Yield Stress 11.4 Rotating Sphere Viscometer 11.5 Falling Cylinder Viscometer 11.5.1 Newtonian Fluids 11.5.2 Non-Newtonian Fluids 11.5.2.1 Shear-Dependent Viscosity 11.5.2.2 Yield Stress 11.6 Concluding Summary Nomenclature Greek Symbols Subscripts References Author Index Subject Index