ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Broadband Matching: Theory and Implementations: 3rd Edition

دانلود کتاب تطبیق باند پهن: تئوری و پیاده سازی ها: چاپ سوم

Broadband Matching: Theory and Implementations: 3rd Edition

مشخصات کتاب

Broadband Matching: Theory and Implementations: 3rd Edition

دسته بندی: موجک و پردازش سیگنال
ویرایش: 3 
نویسندگان:   
سری: Advanced Series in Electrical and Computer Engineering 
ISBN (شابک) : 981461906X, 9789814619066 
ناشر: World Scientific Publishing Co 
سال نشر: 2015 
تعداد صفحات: 626 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 35 مگابایت 

قیمت کتاب (تومان) : 39,000



کلمات کلیدی مربوط به کتاب تطبیق باند پهن: تئوری و پیاده سازی ها: چاپ سوم: ابزار دقیق، پردازش سیگنال



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 17


در صورت تبدیل فایل کتاب Broadband Matching: Theory and Implementations: 3rd Edition به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب تطبیق باند پهن: تئوری و پیاده سازی ها: چاپ سوم نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب تطبیق باند پهن: تئوری و پیاده سازی ها: چاپ سوم

ویرایش سوم یک گزارش یکپارچه، به‌روز و مفصل از تئوری تطبیق پهنای باند و کاربردهای آن در طراحی شبکه‌ها و تقویت‌کننده‌های تطبیق باند پهن ارائه می‌کند. یک ویژگی خاص، افزودن نتایجی است که ارزش عملی مستقیم دارند. آنها منحنی های طراحی، جداول و فرمول های صریح برای طراحی شبکه هایی هستند که دارای پاسخ تاخیر گروهی باترورث، چبیشف یا بیضوی، بسل یا حداکثر مسطح هستند. این نتایج بسیار مفید هستند زیرا روش های طراحی را می توان به محاسبات ساده تقلیل داد. دو مطالعه موردی در انتهای کتاب برای نشان دادن کاربردها در طراحی عملی مدارهای فیلتر مدرن در نظر گرفته شده است.


توضیحاتی درمورد کتاب به خارجی

The third edition presents a unified, up-to-date and detailed account of broadband matching theory and its applications to the design of broadband matching networks and amplifiers. A special feature is the addition of results that are of direct practical value. They are design curves, tables and explicit formulas for designing networks having Butterworth, Chebyshev or elliptic, Bessel or maximally flat group-delay response. These results are extremely useful as the design procedures can be reduced to simple arithmetic. Two case studies towards the end of the book are intended to demonstrate the applications to the practical design of modern filter circuits.



فهرست مطالب

Contents
Preface to the 3rd Edition
Preface to the 2nd Edition
Preface to the 1st Edition
Chapter 1. Foundations of Network Theory
	1. Basic network postulates
		1.1. Real-time function postulate
		1.2. Time-invariance postulate
		1.3. Linearity postulate
		1.4. Passivity postulate
		1.5. Causality postulate
		1.6. Reciprocity postulate
	2. Matrix characterizations of n-port networks
		2.1. The impedance matrix
		2.2. The admittance matrix
		2.3. The hybrid matrix
		2.4. The indefinite-admittance matrix
	3. Power gains
	4. Hermitian forms
	5. The positive-real matrix
	6. Frequency-domain conditions for passivity
	7. Conclusions
	Problems
	References
Chapter 2. The Scattering Matrix
	1. A brief review of the transmission-line theory
	2. The scattering parameters of a one-port network
		2.1. Basis-dependent reflection coefficients
		2.2. Basis-independent reflection coefficient
		2.3. The factorization of the para-hermitian part of z(s)
		2.4. Alternative representation of the basis-independent reflection coefficient
		2.5. The normalized reflection coefficient and passivity
	3. The scattering matrix of an n-port network
		3.1. Basis-dependent scattering matrices
		3.2. Basis-independent scattering matrix
		3.3. The scattering matrices and the augmented n-port networks
		3.4. Alternative representation of the basis-independent scattering matrix
		3.5. Physical interpretation of the normalized scattering parameters
		3.6. The normalized scattering matrix and passivity
		3.7. The normalized scattering parameters of a lossless two-port network
	4. The bounded-real scattering matrix
	5. Interconnection of multi-port networks
	6. Conclusions
	Problems
	References
Chapter 3. Approximation and Ladder Realization
	1. The Butterworth response
		1.1. Poles of the Butterworth function
		1.2. Coefficients of the Butterworth polynomials
		1.3. Butterworth networks
		1.4. Butterworth LC ladder networks
	2. The Chebyshev response
		2.1. Chebyshev polynomials
		2.2. Equiripple characteristic
		2.3. Poles of the Chebyshev function
		2.4. Coefficients of the polynomial p(y)
		2.5. Chebyshev networks
		2.6. Chebyshev LC ladder networks
	3. Elliptic functions
		3.1. Jacobian elliptic functions
		3.2. Jacobi’s imaginary transformations
		3.3. Periods of elliptic functions
			3.3.1. The real periods
			3.3.2. The imaginary periods
		3.4. Poles and zeros of the Jacobian elliptic functions
		3.5. Addition theorems and complex arguments
	4. The elliptic response
		4.1. The characteristic function Fn(ω)
		4.2. Equiripple characteristic in passband and stopband
			A. Maxima and minima in the passband
			B. Maxima and minima in the stopband
			C. Transitional band
		4.3. Poles and zeros of elliptic response
		4.4. Elliptic networks
	5. Frequency transformations
		5.1. Transformation to high-pass
		5.2. Transformation to band-pass
		5.3. Transformation to band-elimination
	6. Conclusions
	Problems
	References
Chapter 4. Theory of Broadband Matching: The Passive Load
	1. The Bode–Fano–Youla broadband matching problem
	2. Youla’s theory of broadband matching: preliminary considerations
	3. Basic constraints on ρ(s)
	4. Bode’s parallel RC load
		4.1. Butterworth transducer power-gain characteristic
		4.2. Chebyshev transducer power-gain characteristic
		4.3. Elliptic transducer power-gain characteristic
		4.4. Equalizer back-end impedance
	5. Proof of necessity of the basic constraints on ρ(s)
	6. Proof of sufficiency of the basic constraints on ρ(s)
	7. Design procedure for the equalizers
	8. Darlington type-C load
		8.1. Butterworth transducer power-gain characteristic
		8.2. Chebyshev transducer power-gain characteristic
		8.3. Elliptic transducer power-gain characteristic
		8.4. Equalizer back-end impedance
	9. Constant transducer power gain
	10. Conclusions
	Problems
	References
Chapter 5. Theory of Broadband Matching: The Active Load
	1. Special class of active impedances
	2. General configuration of the negative-resistance amplifiers
	3. Nonreciprocal amplifiers
		3.1. Design considerations for Nα
		3.2. Design considerations for Nβ
		3.3. Design considerations for Nc
		3.4. Illustrative examples
			A. Realization of Nα
			B. Realization of Nβ
			C. Realization of Nc
			3.4.1. The tunnel diode amplifier: maximally-flat transducer power gain
				A. Realization of Nα
				B. Realization of Nβ
			3.4.2. The tunnel diode amplifier: equiripple transducer power gain
				A. Realization of Nα
				B. Realization of Nβ
		3.5. Extension and stability
	4. Transmission-power amplifiers
		4.1. Tunnel diode in shunt with the load
			4.1.1. Transducer power gain: R2 > R
				A. Maximally-flat low-pass amplifiers
				B. Equiripple low-pass amplifiers
			4.1.2. Transducer power gain: R2 < R
		4.2. Tunnel diode in shunt with the generator
			4.2.1. Transducer power gain: R1 > R
			4.2.2. Transducer power gain: R1 < R
		4.3. Stability
		4.4. Sensitivity
			4.4.1. Tunnel diode in shunt with the load
			4.4.2. Tunnel diode in shunt with the generator
	5. Reciprocal amplifiers
		5.1. General gain-bandwidth limitations
		5.2. Cascade connection
	6. Amplifiers using more than one active impedance
		6.1. Nonreciprocal amplifiers
		6.2. Reciprocal amplifiers
	7. Conclusions
	Problems
	References
Chapter 6. Explicit Design Formulas for Broadband Matching Networks
	1. Low-pass Butterworth networks
		1.1. Basic constraints for low-pass Butterworth response
		1.2. Explicit design formulas for low-pass Butterworth response
		1.3. General explicit formulas for low-pass Butterworth networks
			1.3.1. Explicit formulas for the Darlington type-C section
			1.3.2. lllustrative examples
	2. Low-pass Chebyshev Networks
		2.1. Basic constraints for low-pass Chebyshev response
		2.2. Explicit formulas for low-pass Chebyshev response
		2.3. General Explicit Formulas for Low-pass Chebyshev Networks
			2.3.1. Explicit formulas for the Darlington type-C section
			2.3.2. Illustrative examples
	3. Band-pass Butterworth networks
		3.1. Basic constraints for band-pass Butterworth response
		3.2. Explicit formulas for band-pass Butterworth response
	4. Band-pass Chebyshev networks
		4.1. Basic constraints for band-pass Chebyshev response
		4.2. Explicit formulas for band-pass Chebyshev response
	5. Conclusions
	References
Chapter 7. Broadband Matching of Frequency-Dependent Source and Load
	1. The problem of compatible impedances
		1.1. Wohlers’ compatibility theorem
		1.2. Equivalency of conditions
	2. Broadband matching of frequency-dependent source and load
		2.1. Method of synthesis
		2.2. Illustrative examples
	3. Coefficient realizability conditions of a scattering matrix
		3.1. Basic coefficient constraints
		3.2. Coefficient realizability conditions
		3.3. Illustrative example
		3.4. Realization of the matching networks
	4. General scattering matrix realizability
	5. Conclusions
	References
Chapter 8. Real-Frequency Solutions of the Broadband Matching Problem
	1. Direct real-frequency approach
	2. Piecewise linear approximation
	3. Piecewise linear Hilbert transforms
	4. Gain objective function
	5. Rational representation of R22(ω)
	6. Rational least-squared-error approximation of R22(ω)
	7. Calculation of the network function from a given real part
		7.1. Bode method
		7.2. Brune-Gewertz method
	8. Double matching problems
		8.1. Basic equations
		8.2. Computational algorithm
		8.3. Realizability of R20(ω)
		8.4. Illustrative examples
	9. The complex-normalized reflection coefficients
		9.1. Main theorem
		9.2. Illustrative examples
	10. Analytic solution of the matching problem of Fig. 8.12.
		10.1. Coefficient constraints imposed by z1(s)
		10.2. Coefficient constraints imposed by z2(s)
		10.3. Equalizer back-end impedance
		10.4. Realization of the Darlington type-C section
		10.5. Verification of design
	11. Conclusions
	References
Chapter 9. The Maximally-Flat Time DelayApproximation: The Bessel–Thomson Response
	1. The Bessel–Thomson response
	2. Maximally-flat group delay characteristic
	3. Poles of the Bessel–Thomson function
	4. Synthesis of the Bessel–Thomson filters with prescribed RLC load
		4.1. Basic constraints for the Bessel–Thomson response
		4.2. Design procedure for the Bessel–Thomson response
	5. Synthesis of the Bessel–Thomson filters with general loads
		5.1. Scattering representation with indeterminate coefficients
		5.2. The system transmission function
		5.3. Realizability conditions
		5.4. Illustrative examples
		5.5. Appendix
	References
Chapter 10. Diplexer and Multiplexer Design
	1. Diplexer having Butterworth characteristic
	2. Symmetrical diplexer having Butterworth characteristic
	3. Real-frequency approach to the design of a reactance-ladder diplexer
		3.1. Real-frequency approach to the design of a low-pass high-pass reactance-ladder diplexer
		3.2. Optimization procedure
		3.3. Butterworth diplexer
		3.4. Elliptic response diplexer
		3.5. Appendix: Derivatives required in the formation of Jacobian matrix
	4. Design of a multiplexer with a common junction
		4.1. Formulas for the scattering parameters
		4.2. Derivations of formulas
		4.3. Design method
		4.4. Illustrative examples
	5. Design of a singly-matched multiplexer with a common junction
		5.1. Design formulas
		5.2. Design approach
		5.3. Illustrative example
	References
Appendices
	Appendix A. The Butterworth Response
	Appendix B. The Chebyshev Response
	Appendix C. The Elliptic Response
Symbol Index
Subject Index




نظرات کاربران