ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Bridge Engineering: Design, Rehabilitation, and Maintenance of Modern Highway Bridges

دانلود کتاب مهندسی پل: طراحی، بازسازی و نگهداری پل های بزرگراه مدرن

Bridge Engineering: Design, Rehabilitation, and Maintenance of Modern Highway Bridges

مشخصات کتاب

Bridge Engineering: Design, Rehabilitation, and Maintenance of Modern Highway Bridges

ویرایش: 3 
نویسندگان: ,   
سری:  
ISBN (شابک) : 9780071752480, 007175248X 
ناشر: McGraw-Hill Publishing 
سال نشر: 2012 
تعداد صفحات: 545 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 38 مگابایت 

قیمت کتاب (تومان) : 29,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 12


در صورت تبدیل فایل کتاب Bridge Engineering: Design, Rehabilitation, and Maintenance of Modern Highway Bridges به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب مهندسی پل: طراحی، بازسازی و نگهداری پل های بزرگراه مدرن نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی درمورد کتاب به خارجی



فهرست مطالب

Bridge Engineering
About the Authors
Contents
Preface
Preface to the First Edition
Section 1: Highway Bridges
	1.1 Use and Functionality
		1.1.1 Terminology and Nomenclature
			1. Superstructure.
			2. Substructure.
			3. Appurtenances and Site-Related Features.
			4. Miscellaneous Terms.
		1.1.2 Structure Types and Applications
			1. Slab-on-Girder.
			2. One-Way Slab.
			3. Steel and Concrete Box Girder.
			4. Cable-Stayed.
			5. Suspension.
			6. Steel and Concrete Arch.
			7. Truss.
	1.2 Origins of the Modern Highway Bridge
	1.3 Bridge Designers and their Projects
	1.4 The Bridge Engineering Lexicon
	References
Section 2: Project Inception
	2.1 Project Funding
		2.1.1 User Fees
		2.1.2 Nonuser Fees
		2.1.3 Special Benefit Fees
		2.1.4 Private Financing
		2.1.5 Debt Financing
		2.1.6 Conclusions
	2.2 Types of Design Standards
		2.2.1 General Specifications
		2.2.2 Material-Related Design Codes
			1. Steel.
			2. Concrete.
			3. Timber.
		2.2.3 Use of Design Standards
	2.3 Site Inspection
		2.3.1 The Qualifications of Inspectors
		2.3.2 The Design Inspection
		2.3.3 Recording the Inspection
		2.3.4 Rating Substructure Elements
			1. Joints.
			2. Bearings, Bridge Seats, and Pedestals.
			3. Concrete Elements.
			4. Steel Elements.
			5. Timber Elements.
			6. Embankment.
		2.3.5 Rating Superstructure Elements
			1. Deck and Wearing Surface.
			2. Primary and Secondary Members.
		2.3.6 Rating Appurtenance and Site-Related Elements
			1. Railing.
			2. Drainage Systems.
			3. Utilities.
			4. Lighting and Signing.
		2.3.7 Inspecting for Scour
			1. The Channel.
			2. The Substructure.
		2.3.8 Conclusions
	2.4 Site Survey
		2.4.1 Topography
		2.4.2 Planimetry
		2.4.3 Structure Features
	2.5 Physical Testing
		2.5.1 Coring
		2.5.2 Delamination Testing
		2.5.3 Testing for Cover
		2.5.4 Measuring Steel Thickness
		2.5.5 Detecting Fatigue Cracks
	2.6 The Inspection Team
	2.7 As-Built Plans and other Record Data
		2.7.1 Supplementing As-Built Plans
			1. Guard Railing.
			2. Drainage Facilities.
			3. Traffic Barriers.
			4. Miscellaneous Elements.
		2.7.2 Other Sources
	2.8 Conclusions
	References
Section 3: The Superstructure
	3.1 Superstructure Types
		3.1.1 Steel Superstructures
			1. Rolled Beam.
			2. Rolled Beam with Cover Plate.
			3. Plate Girder.
			4. Box Girder.
			5. Steel Rigid Strut Frame.
			6. Large Structures.
		3.1.2 Concrete Superstructures
			1. Prestressed Concrete Girder.
			2. Concrete Box Girder.
			3. Concrete Slab.
			4. Adjacent Prestressed Slab.
			5. Concrete Rigid Frame.
			6. Concrete Strut Frame.
			7. Concrete Arch.
		3.1.3 Timber Superstructures
			1. Glulam Timber.
			2. Stress-Laminated Timber Deck.
			3. Trestle.
			4. Truss.
		3.1.4 Secondary Members
			1. Diaphragms.
			2. Lateral Bracing.
			3. Portal and Sway Bracing.
	3.2 Deck Types
		3.2.1 Noncomposite and Composite Decks
		3.2.2 Cast-in-Place Concrete Slab
		3.2.3 Precast, Prestressed Concrete Panels
		3.2.4 Steel Orthotropic Plate
		3.2.5 Steel Grid
		3.2.6 Timber
		3.2.7 Corrugated Metal
		3.2.8 Fiber Reinforced Polymer (FRP)
	3.3 Wearing Surface Types
		3.3.1 Asphalt Concrete
		3.3.2 Polymer Modified Concrete
		3.3.3 High-Performance Concrete
		3.3.4 Integrated Wearing Surface
	3.4 Deck Joint Types
		3.4.1 Open and Sealed Joints
		3.4.2 Filled Joints
		3.4.3 Compression Seal Joints
		3.4.4 Strip Seal Joints
		3.4.5 Modular Joints
		3.4.6 Finger Plate Joints
		3.4.7 Sliding Plate Joints
		3.4.8 Conclusions
	3.5 Design Loads
		3.5.1 Background and History
		3.5.2 Permanent Loads
			1. Dead Load.
			2. Superimposed Dead Load.
			3. Pressures.
		3.5.3 Temporary Loads
			1. Vehicle Live Load.
			2. Pedestrian Load.
			3. Earthquake Loading.
			4. Wind Loading.
			5. Channel Forces.
			6. Braking Force.
			7. Centrifugal Forces.
			8. Dynamic Load Allowance.
			9. Construction Loads.
		3.5.4 Deformation and Response Loads
			1. Shrinkage.
			2. Creep.
			3. Settlement.
			4. Uplift.
			5. Thermal Movement.
		3.5.5 Group Loading Combinations
			1. AASHTO Standard Specifications.
			2. AASHTO LRFD Specifications.
	3.6 Design Methods
		3.6.1 Working Stress Design
		3.6.2 Limit States Design
		3.6.3 Background and History
		3.6.4 The Many Names of Working Stress and Limit States
			1. Allowable Stress Design.
			2. Service Load Design.
			3. Load Factor Design.
			4. Strength Design.
			5. Ultimate Strength.
			6. Load and Resistance Factor Design.
	3.7 Internal Forces
		3.7.1 Bending Force
		3.7.2 Shear Force
		3.7.3 Torsional Force
		3.7.4 Axial Force
	3.8 Load Distribution
		3.8.1 How Loads Are Distributed
		3.8.2 Different Types of Load Distribution
			1. Interior Longitudinal Members.
			2. E xterior Longitudinal Members.
			3. Transverse Members.
			4. A djacent Concrete Slabs (or Box Beams).
			5. O ther Multibeam Decks.
			6. S lab-Type Bridges.
		3.8.3 Conclusions
	3.9 Concrete Deck Slabs
		3.9.1 Equivalent Slab Strip
		3.9.2 Calculation of Bending Moment
		3.9.3 Distribution Reinforcement
		3.9.4 Minimum Slab Thickness
		3.9.5 Empirical Design Method
		3.9.6 Slab Reinforcement Details
		3.9.7 Construction, Rehabilitation, and Maintenance
			1. Increased Slab Thickness and Cover.
			2. Coated Reinforcement.
			3. Waterproofing Membrane.
			4. Drainage.
			5. Snow and Ice Removal.
			6. Patching.
			7. Sealing.
			8. Cathodic Protection.
			9. Chloride Extraction.
			10. Realkalization.
		3.9.8 Conclusions
	3.10 Composite Steel Members
		3.10.1 Composite Action
		3.10.2 Shored and Unshored Construction
		3.10.3 Effective Flange Width
		3.10.4 The Transformed Section
		3.10.5 Effects of Creep
		3.10.6 Choosing a Girder Section
			1. Compute Design Moments and Shear Forces.
			2. Total Factored Moment and Shear Forces.
			3. Choosing a Section.
			4. Composite Section in Positive Flexure.
			5. Composite Section in Negative Flexure and Noncomposite Sections.
			6. Shear Resistance of I-Sections.
			7. Web Bending-Buckling.
			8. Conclusions.
		3.10.7 Shear Connector Design
			1. Fatigue.
			2. Additional Geometric Constraints.
			3. Effect of Stay-in-Place Forms.
			4. Strength Limit State.
		3.10.8 Bridge Fatigue
			1. Linear-Elastic Fracture Mechanics.
			2. Stress-Life Method.
			3. AASHTO Method.
			4. Fatigue-Prone Details.
		3.10.9 Deflections
		3.10.10 Camber
	3.11 Plate Girder Design
		3.11.1 Hybrid Girders
		3.11.2 Elements of a Plate Girder
			1. Flange Plate Thickness.
			2. Flange Plate Economy.
			3. Web Thickness.
			4. Web Plate Economy.
			5. Transverse Intermediate Stiffeners.
			6. Transverse Intermediate Stiffener Economy.
			7. Bearing Stiffeners.
			8. Longitudinal Stiffeners.
			9. Longitudinal Stiffener Economy.
			10. Miscellaneous Economy Issues.
		3.11.3 Lateral Bracing for Plate Girders
			1. Where Bracing Is Located.
			2. Bracing as a Function of Span Length.
			3. Placement and Types of Lateral Bracing.
			4. Eliminating Lateral Bracing.
			5. Economy of Lateral Bracing.
		3.11.4 Cross-Frames for Plate Girders
	3.12 Continuous Beams
		3.12.1 Advantages of Continuous Beams
		3.12.2 Rolled Sections as Continuous Beams
		3.12.3 Moment Distribution
			1. Overview.
			2. Fixed-End Moments.
			3. Relative Beam Stiffness.
			4. Fixity Factor.
			5. Stiffness Factor.
			6. Distribution Factor.
			7. Carryover Factor.
			8. Method Synopsis.
		3.12.4 Influence Lines
			1. General Moment Support Equation.
			2. Unit Loads.
			3. Influence Data at Intermediate Points.
			4. Predefined Tables.
			5. Using Influence Lines.
			6. Area under an Influence Line.
			7. Conclusions.
		3.12.5 Alternate Method for Analysis of Continuous Beams
		3.12.6 Live Load on Continuous Beam Structures
			1. Computing Moment Using Influence Lines.
			2. Special Load Points.
			3. Shear Force.
		3.12.7 Composite Section in Negative Bending
		3.12.8 Girder Splices
			1. Required Strength.
			2. Welded Splices.
			3. Bolted Splices.
			4. Bolted Web Splices.
			5. Bolted Flange Splices.
		3.12.9 Pin and Hanger Assemblies
	3.13 Protecting Steel Superstructures
		3.13.1 Protective Coating Systems
			1. Background and History.
			2. The Nature of Steel Corrosion.
			3. Inhibitive Primers.
			4. Sacrificial Primers.
			5. Barrier Coatings.
			6. Coating Applications.
			7. Surface Preparation.
			8. Overcoating.
			9. Micaceous Iron Oxide (MIO) Coatings.
			10. Conclusions.
		3.13.2 Containment and Disposal of Paint Waste
			1. Background and History.
			2. Containment Devices.
			3. Recycling Abrasives.
			4. Disposal Methods.
			5. Conclusions.
		3.13.3 Weathering Steel
			1. Background and History.
			2. Material Properties of Weathering Steel.
			3. Environmental Considerations.
			4. Maintenance of Weathering Steel.
			5. Inspection of Weathering Steel.
			6. Rehabilitation of Weathering Steel.
			7. Conclusions.
		3.13.4 Galvanizing
			1. Overview.
			2. Benefits and Drawbacks.
		3.13.5 Conclusions
	3.14 Load Rating
		3.14.1 Inventory and Operating Ratings
		3.14.2 Field Measurements and Inspection
		3.14.3 Loading the Structure
		3.14.4 Allowable Stress Method
			1. Steel and Wrought Iron.
			2. Conventionally Reinforced and Prestressed Concrete.
			3. Masonry.
			4. Timber.
		3.14.5 Load Factor Method
		3.14.6 Load and Resistance Factor Method
			1. Overview.
			2. Rating Procedures.
			3. Fatigue Life Evaluation.
			4. The Concept of Safe Evaluation.
			5. Conclusions.
	3.15 Prestressed Concrete
		3.15.1 Overview of Prestressed Concrete
			1. Pretensioned Beams.
			2. Posttensioned Beams.
			3. Application of Pre- and Posttensioned Concrete.
			4. Prestressing Steel.
			5. Concrete for Prestressing.
		3.15.2 Composite Beams
			1. Advantages.
			2. Effective Flange Width.
			3. Horizontal Shear.
		3.15.3 Required Prestress Force
		3.15.4 Loss of Prestress
			1. Elastic Shortening.
			2. Friction.
			3. Anchorage Set.
			4. Time-Dependent Losses.
			5. Total Loss.
		3.15.5 Allowable Stresses
		3.15.6 Flexural Strength
	3.16 Prestressed Concrete Maintenance
		3.16.1 Overview
		3.16.2 Deterioration of Prestressed Concrete
			1. Cracking.
			2. Other Forms of Concrete Problems.
			3. Deterioration of Prestressing Steel.
		3.16.3 Inspection of Prestressed Concrete
		3.16.4 Rehabilitation of Prestressed Concrete
			1. Patching.
			2. Permanent Formwork.
			3. Crack Injection.
			4. Sealers.
			5. Strengthening.
			6. Conclusions.
	References
Section 4: The Substructure
	4.1 Abutments
		4.1.1 Types of Abutments
			1. Gravity Abutment.
			2. Cantilever Abutment.
			3. Full-Height Abutment.
			4. Stub Abutment.
			5. Semistub Abutment.
			6. U Abutment.
			7. Counterfort Abutment.
			8. Spill-through Abutment.
			9. Pile Bent Abutment.
			10. MSE Systems.
		4.1.2 Coulomb Earth Pressure Theory
		4.1.3 Abutment Foundation Design
			1. Loading.
			2. Spread Footings.
			3. Foundations on Piles.
			4. Foundations on Drilled Shafts.
		4.1.4 Abutment Stem
		4.1.5 Wingwalls
		4.1.6 Other Related Foundation Topics
		4.1.7 Mononobe-Okabe Analysis
			1. Background.
			2. Horizontal and Vertical Seismic Coefficients.
			3. Basic Assumption.
			4. Active Earth Pressure.
			5. Applying Active Earth Pressure.
			6. Caveats.
			7. Superstructure Loads.
		4.1.8 Rehabilitation and Maintenance
			1. Cracking.
			2. Surface Deterioration.
			3. Stability Problems.
			4. Bridge Seat Deterioration.
			5. Sheet Piling Abutments.
			6. Stone Masonry Abutments.
			7. MSE Systems.
			8. Footings.
			9. Piles.
	4.2 Piers
		4.2.1 Types of Piers
			1. Hammerhead.
			2. Column Bent.
			3. Pile Bent.
			4. Solid Wall.
			5. Integral.
			6. Single Column.
		4.2.2 Behavior and Loading of Piers
		4.2.3 Design Criteria
		4.2.4 Design of Compression Members
			1. Design Considerations.
			2. Slenderness Effects.
			3. Interaction Diagrams.
			4. Limits of Reinforcement.
		4.2.5 Rehabilitation and Maintenance
		4.2.6 Scour
			1. Overview.
			2. Rehabilitation and Maintenance.
			3. Replacement of Material.
			4. Changing the Structure.
			5. Replacing the Structure.
	4.3 Bearings
		4.3.1 Forces Acting on a Bearing
		4.3.2 Movement of Bearings
		4.3.3 Types of Bearings
			1. Rocker Bearings.
			2. Roller Bearings.
			3. Sliding Plate Bearings.
			4. Pot Bearings.
			5. Spherical Bearings.
			6. Elastomeric Bearings.
			7. Lead Rubber Bearings.
		4.3.4 Rehabilitation and Maintenance
	References
Section 5: Implementation and Management
	5.1 The Highway
		5.1.1 Design Elements of a Highway
			1. Horizontal Alignment.
			2. Vertical Alignment.
			3. Stopping Sight Distance.
			4. Roadway Width.
		5.1.2 Maintenance of Traffic
	5.2 Contract Documents
		5.2.1 Design Submissions
			1. Alternative Study.
			2. Preliminary Submission.
			3. Advanced Detail Submission.
			4. Final Submission.
		5.2.2 Computer-Aided Design and Drafting
			1. File Organization.
			2. Geometric Source Files.
			3. The Forgotten D in CADD.
			4. Graphic Standards and Quality Control.
		5.2.3 Conclusions
	5.3 Bridge Management Systems
		5.3.1 Background and History
		5.3.2 Inventory Database
		5.3.3 Maintenance Database
		5.3.4 Project and Network Level Analysis
		5.3.5 Predicting the Condition of Bridges
		5.3.6 Miscellaneous Decision-Assisting Criteria
		5.3.7 Costing Models
		5.3.8 Optimization Models
		5.3.9 Building the Database
		5.3.10 Managing Small and Large Structures
		5.3.11 Current Bridge Management Systems
		5.3.12 BMS Link to Design of Bridges
		5.3.13 BMS Link to Pavement Management Systems
		5.3.14 GIS and Imaging Technologies
	References
Appendix
Acknowledgments
Illustration Credits
Index




نظرات کاربران